# Diversity and distribution of bats (Mammalia Chiroptera) in Burkina Faso

Napoko Malika Kangoyé<sup>1\*</sup>, Adama Ouéda<sup>1</sup>, Laurent Granjon<sup>2</sup>, Adjima Thiombiano<sup>3</sup>, Wendengoudi Guenda<sup>1</sup> & Jakob Fahr<sup>4</sup>

<sup>1</sup>Laboratoire de Biologie et Ecologie Animales, UFR/SVT, Université de Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso <sup>2</sup>IRD, UMR CBGP (INRA/IRD/CIRAD/Montpellier SupAgro), 755 avenue du campus Agropolis, CS30016 34988 Montferrier sur lez Cedex, France

<sup>3</sup>Laboratoire de Biologie et Ecologie Végétales, UFR/SVT, Université de Ouagadougou, 03 BP 7021 Ouagadougou 03, Burkina Faso <sup>4</sup>Max Planck Institute for Evolutionary Anthropology, Germany

\*Corresponding author, e-mail: kangoyemalika@yahoo.fr

#### ABSTRACT

Herein we review available information on the bat fauna of Burkina Faso, synthesizing data on a considerable number of museum specimens collected in the country between 1964 and 2010. We aim to give an exhaustive review of the locally occurring taxa and their distribution overlaid on different phytogeographic areas. To achieve this objectives, available information about bats in Burkina Faso were gathered to a database from scientific publications and museums from 1964 to 1993. This database was complemented by new field collections from 2002 to 2009. In total, 3,480 bat specimens, collected over a period of 46 years from 164 localities and belonging to 51 species, were examined. The different taxa are distributed into 24 genera and nine families. The fauna includes the following families: Pteropodidae (seven species), Hipposideridae (seven species), Emballonuridae (three species), Nycteridae (five species) and Molossidae (six species) and occur in all phytogeographical zones in Burkina Faso. However, Rhinolophidae (three species) were absent in the North-Sahelian zone but occur in the other parts of the country. Similarly, Vespertilionidae (17 species) were absent in the South-Sahelian. Rhinopomatidae (two species) were only present in the extreme north and the extreme south of the country, while the Megadermatidae (one species) were present only in the Sudanian zone.

**KEY WORDS** Bat; Burkina Faso; distribution; species richness; West Africa.

Received 05.05.2015; accepted 11.06.2015; printed 30.06.2015

### INTRODUCTION

Significant collections of bats from Burkina Faso are preserved in several museums. The most important one is found in the National Museum of Natural History at Washington D.C. (USNM) and comprises more than 1,100 specimens. They come from a project on mammal collection, the Smithsonian Institution African Mammal Project conducted between 1961 and 1972 in 20 countries of North, West and South Africa (Schmidt et al., 2008). The first publication referring to bats from Burkina Faso was made by Kock (1969), who mentioned three species from Nouna. The second one was produced by Poché (1975) who mentioned six species, including five new ones for Burkina Faso, among USNM specimens collected by the Smithsonian Institution African Mammal Project. A year later, another species from Bobo-Dioulasso was quoted by Adam & Hubert (1976). The first study which dealt specifically with bats of Burkina Faso was conducted by Koopman et al. (1978). They listed a total of 27 species including 18 new ones for the country. Then, Green (1983) collected nine species in Burkina Faso including one new for the country. Between 1980 and 1981, another major study of bats from Burkina Faso was conducted by Koch-Weser (1984). She published 24 species including six first records for Burkina Faso. Two species deposited at USNM in 1965 and 1968 were published in 2006 by African Chiroptera Project (2006). By 1984, 36 species of bats had already been identified in Burkina Faso. Since the late 1980s, no first record has been reported from Burkina Faso. Meanwhile, many other species have been reported in neighboring countries (Kock et al., 2002; Djossa, 2007; Weber & Fahr, 2007; Fahr, 2008). Also, the principal study for West African bats species made by Rosevear (1965) mentioned a lot a species present in West Africa and not yet encountered in Burkina Faso. In addition, it is now well established that only intense and long term sampling can lead to accurate estimations of species richness and abundance (Kalko et al., 1996; Simmons & Voss, 1998; Bergallo et al., 2003; Sampaio et al., 2003), which in turn represent important indices in biodiversity conservation planning (Lim & Engstrom, 2001; Andelman & Willig, 2002).

Therefore, our study will be based on this work and will consist initially in gathering all existing information on bats of Burkina Faso, conducting field trips for capturing and identifying the various species, multiplying opportunities of capturing new species for the country and particularly, in establishing the geographical coordinates of areas in which species are captured or observed. It will thus increase for sure the number of species of bats present in Burkina Faso and especially a significant increase of geographical coordinates of species because the results achieved will be used later for modeling the distribution of bats in the country. This modeling will help to have an idea of the variation in the richness of species across the entire national territory and therefore, to identify areas with high potential, that is to say, areas that contain a great variety of bats. Since it is from the modeling results that measures will be taken for the conservation of bats in Burkina Faso, it was necessary to identify the various areas to prospect for a wide coverage, to put a particular emphasis on areas that can potentially contain a large number of species and manage to identify different sites in these areas where sampling will be made. And for that, we formulated the following assumptions.

Weather determines the richness of species (Hawkins et al., 2003). Indeed, according to Tews et al. (2004), the majority of studies shows that there is a positive correlation between habitat heterogeneity and diversity of species (August, 1983). From the North to South of Burkina Faso, there is an increase in rainfall and hence an improvement of vegetation with the savanna which gets gradually grassy and shrubby, tending towards a woodland in the far Southwest. The North of the country which is less watered and thus covered by sparse vegetation will be therefore less rich in species than the south which is well watered and with more developed vegetation. Climate is not the only factor influencing species richness and may not explain the diversity pattern for all taxonomic groups (Hawkins et al., 2003). Indeed, availability, abundance and distribution of food resources are also significant factors that affect the organization and dynamism of bats (Kalko et al., 1996; Kalko, 1997, 1998). Since there is an increase in biomass in Burkina Faso from north to south, we can conclude that diversity is higher in the South thanks to the increase of this biomass that will allow each species to find the resources needed for their food.

As observed by some authors (Bernard, 2001; Lim & Engstrom, 2001; Kalko & Handley, 2001; Sampaio et al., 2003), there is a positive correlation between complexity of habitat and diversity of bats, complexity of habitat being the vertical development of vegetation (August, 1983). In addition, complex habitats can provide more nests and allow the exploitation of environmental resources in various ways and thus increase species diversity (Bazzaz, 1975). And as the South of the country has a set of specific habitats such as the various protected forests, gallery forests and the numerous rock formations such as the cliffs of Banfora, peaks of Sindou and the range of Gobnangou that increase the complexity of the environment, we believe that this area can contain bats in abundance. Indeed, these rock formations provide additional shelters to bats through the various cracks and caves they have.

As already shown by Fahr & Kalko (2010), the diversity of bats increases with environmental heterogeneity and habitat complexity. Added to availability of food resources, the South may potentially contain a great diversity of bats. In addition,

all existing information on bats in Burkina Faso from publications and museums indicate that many areas had not yet been visited or had been poorly studied especially in the Southwest. That's why we naturally put a particular focus on this part of the country to fill the sampling gaps. For this, the latest publication referring to bats from Burkina Faso was made by Kangoyé et al. (2012). She captured 45 species among which 15 species including 2 frugivorous and 13 insectivorous were recorded for the first time in Burkina Faso. These new species recorded increased the bats diversity of Burkina Faso from 36 to 51.

### **MATERIAL AND METHODS**

#### Study area

Burkina Faso is a Sahelian country with a total area of 274,200 km<sup>2</sup> and landlocked in the heart of West Africa. It occurs between 9°20'–15°3' N and,

2°20'E-5°3' W. It is bounded by Niger, Mali, Ghana, Ivory Coast, Benin and Togo. The majority (about 75%) of the country occurs on crystalline Precambrian basement rock, which gives a generally flat terrain (Ministère de l'Environnement et de l'Eau, 1999). The hydrographic network is relatively dense despite the precarious weather conditions (Dipama, 2010). Burkina Faso is characterized by a tropical climate, precisely a Sudano-Sahelian one, generally alternating two seasons: a long dry season from October to April and a short rainy season from May to September. The larger portion of the country lies in the Sudanian climatic zone, including central and southern parts. The northern area is under the influence of Sahelian climate (Ministère de l'Environnement et de l'Eau, 1999).

According to Guinko (1984) and Fontès & Guinko (1995), we distinguish two major phytogeographic areas on the basis of climate, vegetation and fauna: the Sahelian and the Sudanian areas, each divided into two sectors (north and south) (Fig. 1).



Figure 1. Previous and recent sampling sites of bats in Burkina Faso in relation to vegetation zones.

Sahelian phytogeographical vegetation area includes tree and shrub steppes, grassy steppes, tiger bush and riparian formations (Ganaba, 2008). North-Sahelian area lies north of the fourteenth parallel and is characterized by a set of species typical of the Sahara and Sahel that rarely occur further to the south in the country. South-Sahelian zone extends between the thirteenth and fourteenth parallel. This is the area where interfere many Sudanian ubiquitous species, but the general appearance of vegetation, low enough, is dominated by the Sahelian and Saharan elements. The Sudanian phytogeographic area is located south of the thirteenth parallel.

The vegetation is characterized by a set of savannas (from woodland to grassland). North-Sudanian area is located between the thirteenth and twelfth parallel (13° and 11° 30'). Savannas have the look of rustic landscapes. South-Sudanian sector is the area below the parallel 11° 30'. The vegetation is dense. Savannah is generally higher and better covering.

### Data collection

The first phase of this work consisted in gathering all publications made on the bats of Burkina Faso. At this level, information about all species as well as areas where the species were found, especially geographic coordinates have been collected and integrated to a data base. Secondly, data from museums hold specimens from Burkina Faso were used to complete our data base. Specimens from Burkina Faso are conserved in museums including: American Museum of Natural History, New York (AMNH); Natural History Museum, London (BMNH); Muséum d'Histoire naturelle Genève (MHNG); Muséum national d'Histoire naturelle, Paris (MNHN); Musée Royal de l'Afrique Centrale, Tervuren (MRAC); Royal Ontario Museum, Toronto (ROM), Senckenberg Museum, Frankfurt/M. (SMF), and National Museum of Natural History, Smithsonian Institution, Washington, DC (USNM). Most collections have been personally reviewed by Dr. Jakob Fahr (BMNH, MHNG, MNHN, and USNM). Sampling sites and coordinates are presented in Table 1.

Recently, new data were collected by Laurent Granjon and his colleagues either during field trips mainly devoted to rodent sampling (from 2002 to 2005), or within the framework of the FSP (Fonds de Solidarité Prioritaire) project N° 2002-87 "Gestion durable des ressources sylvo-pastorales et production fourragère dans l'Ouest du Burkina-Faso" (from 2006 to 2008) These specimens are housed at the University of Braunschweig in Germany and IRD Bamako. Sampling sites, coordinates, dates of capture, number of nets used and capture effort made are presented in Table 2. Finally, the most recent data were collected by the BIOTA project (Biodiversity Monitoring Transect Analysis in Africa) from 2008 to 2009. This last data, that represents the main contribution to this paper, permitted to fill sampling gaps and leaded to the description of some species new for Burkina Faso (Kangoyé et al., 2012). The corresponding specimens are housed in the University of Ouagadougou, Burkina Faso. Sampling sites, coordinates, dates of capture, number of nets used and capture effort made are presented in Table 3. All collection localities are mapped in figure 1.

During BIOTA collect, we captured bats with Japanese nylon or polyester nets of Vohwinkel mark (length: 6 m or 12 m, height: 2.80 m, 5 floors, mesh: 16 mm, denier 70/2) black. A Garmin GPS 12 was used to take the coordinates of the sites visited. The nets have been installed and open, either all night from 6 pm to 6 am, 6 pm to 12 pm and from 4 am to 6 am, or part of the night from 6 pm to 12 pm depending on the movement of bats. The nets were visited regularly to remove the bats captured according to the intensity of capture. Each captured bat was placed individually in a capture cotton bag. Each bat was then weighed with a Pesola weighing machine with an accuracy of 0.25 g, 1g or 2 g depending on the size of the specimen. The forearm of the bat was measured with a Mahr caliper 16U with an accuracy of 0.1 mm.

The following parameters were recorded: sex, age (juvenile, sub-adult, young-adult or adult) according to Antony (1988), the reproductive status (testicles in the abdomen or testicles in the scrotum for males; nulliparous, pregnant, lactating or post-lactating for females) according to Racey (1988). Bats were therefore identified using the keys of Rosevear (1965), Hayman & Hill (1971) and the compilation of Bergmans (2002). Once identified, bats were released on site.

Species which were difficult to identify and other specimens were conserved in alcohol 70% to verify identification, to confirm their presence in \_

| Locality                           | Latidude | Longitude | Publications                                                                                                                    |
|------------------------------------|----------|-----------|---------------------------------------------------------------------------------------------------------------------------------|
|                                    |          |           |                                                                                                                                 |
| Aribinda                           | 14,200   | -0.867    | Koch-Weser, 1984                                                                                                                |
| Arli River                         | 11.517   | 1.467     | Green, 1983                                                                                                                     |
| Arli-NP                            | 11.550   | 1.450     | Koopman et al., 1978; Green, 1983                                                                                               |
| Arly                               | 11.583   | 1.467     | Poché, 1975: Green, 1983; Bergmans, 1988; Van Cakenberghe & De Vree, 1993                                                       |
| Bal-y-ata                          | 14.283   | -0.100    | Koch-Weser, 1984                                                                                                                |
| Banfora                            | 10.633   | -4.767    | Bergmans, 1988                                                                                                                  |
| Barga                              | 13.783   | -2.267    | Poché, 1975; Koopman et al., 1978                                                                                               |
| Barga (9 km NE)                    | 13.833   | -2.200    | Koopman et al., 1978; Van Cakenberghe & De Vree, 1998                                                                           |
| Bigou River                        | 11.500   | 0.583     | BMNH                                                                                                                            |
| Bobo Dioulasso                     | 11.200   | -4.300    | Koch-Weser, 1984; Bergmans, 1988                                                                                                |
| Bokouongou River                   | 11.500   | 1.550     | Green, 1983                                                                                                                     |
| Bontioli (Bougouriba River)        | 10.883   | -3.067    | Hill & Harrison, 1987                                                                                                           |
| Boromo                             | 11.750   | -2.933    | Koopman et al., 1978; Koch-Weser, 1984                                                                                          |
| Bossey-Dogabe                      | 14.533   | -0.300    | Koch-Weser, 1984                                                                                                                |
| Bourzanga                          | 13.683   | -1.550    | Koch-Weser, 1984; Kock et al., 2001                                                                                             |
| Boussouma (5 km N)                 | 12.967   | -1.083    | Koopman et al., 1978; Bergmans, 1988                                                                                            |
| Cella (1 km N)                     | 11.617   | -0.367    | Koopman et al., 1978; Bergmans, 1989                                                                                            |
| Comoé River                        | 9.950    | -4.633    | Hill & Harrison, 1987                                                                                                           |
| Dedougou                           | 12.467   | -3.467    | Koch-Weser, 1984                                                                                                                |
| Deux Bales (Black Volta River)     | 11.667   | -3.000    | BMNH                                                                                                                            |
| Diebougou                          | 10.967   | -3.250    | Koch-Weser, 1984; Kock et al., 2001                                                                                             |
| Dindéresso                         | 11.217   | -4.433    | Hervy & Legros, 1981c                                                                                                           |
| Dio                                | 13.333   | -2.633    | Koopman et al., 1978; Sakamoto et al., 1979; Van Cakenberghe & De Vree, 1998                                                    |
| Diomga                             | 14.067   | -0.050    | Koch-Weser, 1984; Kock et al., 2001                                                                                             |
| Djibo                              | 14.100   | -1.617    | Koch-Weser, 1984; Aulagnier et al., 1987<br>Koommen et al. 1979: Babbing et al., 1985: Paramang 1989: Van Cakapharaha & Da Vraa |
| Diipologo                          | 10,933   | -3.117    | 1993; Van Cakenberghe & De Vree, 1998                                                                                           |
| Dori                               | 14.033   | -0.033    | Koch-Weser, 1984: Aulagnier et al., 1987                                                                                        |
| Fada N'Gourma                      | 12.067   | 0.350     | Robbins et al., 1985                                                                                                            |
|                                    | 121007   | 01000     | Poché, 1975; Koopman et al., 1978; Bergmans, 1988; Bergmans, 1989; Bergmans, 1991;                                              |
| Fo                                 | 11.883   | -4.517    | Koch-Weser, 1984                                                                                                                |
| Forêt de Lera                      | 10.600   | -5.317    | Hervy & Legros, 1981c                                                                                                           |
| Founzan                            | 11.450   | -3.233    | Cakenberghe & De Vree,1993; Van Cakenberghe & De Vree,1985; Bergmans,1988; Van                                                  |
| Gandéfabou                         | 14.767   | -0.700    | Koch-Weser, 1984                                                                                                                |
|                                    |          |           | Poché, 1975; Koopman et al., 1978; Robbins et al., 1985; Van Cakenberghe & De Vree,                                             |
| Goden                              | 12.200   | -2.300    | 1985; Van Cakenberghe & De Vree,1993                                                                                            |
| Gorgadji (17 km E)                 | 14.033   | -0.367    | Koopman et al., 1978                                                                                                            |
| Gorom-Gorom                        | 14.433   | -0.233    | Koch-Weser, 1984                                                                                                                |
| Karfiguéla (near Banfora)          | 10.689   | -4.809    |                                                                                                                                 |
| Kaya                               | 13.083   | -1.083    |                                                                                                                                 |
| Koumbia (Bobo Dioulasso)           | 11.233   | -3.700    | Adam & Hubert, 19/6 [as from "Bobo-Dioulasso"]                                                                                  |
| Noutoura                           | 10.350   | -4.833    | Koopman et al., 1978; Bergmans, 1991<br>Koopman et al., 1978; Bergmans, 1988; Van Cakenberghe & De Vree, 1993; Van              |
| Koutoura (5 km SW)                 | 10.317   | -4.867    | Cakenberghe & De Vree, 1998                                                                                                     |
| Markoye                            | 14.650   | 0.033     | Koopman et al., 1978                                                                                                            |
| Menegou                            | 14.367   | -0.283    | Koch-Weser, 1984                                                                                                                |
|                                    |          |           | Koopman et al., 1978; Sakamoto et al., 1979; Robbins et al., 1985; Van Cakenberghe & De                                         |
| Natiaboani                         | 11.700   | 0.500     | vice, 1965; Dergmans, 1968; van Cakenbergne & De vice, 1985; van Cakenberghe & De Vice, 1998; Csorba et al., 2003               |
|                                    |          |           | Koopman et al., 1978, Sakamoto et al., 1979; Van Cakenberghe & De Vree, 1985; Csorba et                                         |
| Nayouré (3 km SE)                  | 12.250   | 0.267     | al., 2003                                                                                                                       |
| Nazinga [Forêt Classée de Nazinga] | 11.167   | -1.417    | Bergmans, 1988                                                                                                                  |
| Nobéré (1 km S)                    | 11.533   | -1,200    | Koopman et al., 1978; Van Cakenberghe & De Vree, 1993; Csorba et al., 2003                                                      |
| Nobéré (11 km S)                   | 11.450   | -1.200    | Koopman et al., 1978                                                                                                            |
| Nobéré (12 km S)                   | 11.433   | -1.200    | Koopman et al., 1978                                                                                                            |
| Nobéré (2 km S)                    | 11.533   | -1.200    | Koopman et al., 1978                                                                                                            |
| Nobere (9 mi S)                    | 11.417   | -1.200    | Koopman et al., 1978; Van Cakenberghe & De Vree, 1985                                                                           |
| Nouna)                             | 12.733   | -3.867    | Kock, 1969; Koch-Weser, 1984; Kock et al., 2001                                                                                 |
| Orodara                            | 10.983   | -4.917    | Koopman et al., 1978; Kocn-weser, 1984                                                                                          |

Table 1/1. Gazetteer of previously records: data from publications and museums from 1964 to 1993 (continued).

| Locality                       | Latidude | Longitude | Publications                                                                                                                                                                 |
|--------------------------------|----------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Orodara (27 km ENE)            | 11.100   | -4.683    | Koopman et al., 1978; Van Cakenberghe & De Vree, 1985; Bergmans, 1989; Bergmans, 1997; Van Cakenberghe & De Vree, 1993; Van Cakenberghe & De Vree, 1998; Csorba et al., 2003 |
| Ouagadougou                    | 12.367   | -1.517    | Koopman et al., 1978, Koch-Weser 1984, Robbins et al., 1985, Bergmans 1988; Volleth, 1989; Volleth & Heller, 1994 ;Kock et al., 2001                                         |
| Ougarou                        | 12.150   | 0.933     | Koopman et al., 1978; Robbins et al., 1985; Bergmans, 1988<br>Koopman et al., 1978; Van Cakenberghe & De Vree, 1993; Van Cakenberghe & De Vree,                              |
| Oulo                           | 11.900   | -2.983    | 1998                                                                                                                                                                         |
| Oursi                          | 14.683   | -0.450    | Koch-Weser, 1984; Aulagnier et al., 1987                                                                                                                                     |
| Petoye                         | 14.583   | -0.367    | Koopman et al., 1978; Koch-Weser, 1984; Robbins et al., 1985                                                                                                                 |
| Piyiri (7 km N) [= Pigahiri]   | 11.317   | -1.133    | Koopman et al., 1978                                                                                                                                                         |
| Pô-NP (Red Volta River)        | 11.333   | -1.167    | Koopman et al., 1978                                                                                                                                                         |
| Saba                           | 14.717   | -0.767    | Koch-Weser, 1984; Van Cakenberghe & De Vree, 1994                                                                                                                            |
| Saouga                         | 14.367   | -0.150    | Koch-Weser, 1984                                                                                                                                                             |
| Seguenega (6 km SE)            | 13.417   | -1.933    | Koopman et al., 1978<br>Koopman et al., 1978; Koch-Weser, 1984; Bergmans, 1988; Bergmans, 1989; Bergmans,                                                                    |
| Sideradougou                   | 10.667   | -4.250    | 1991; Van Cakenberghe & De Vree, 1993                                                                                                                                        |
| Sintao                         | 13.717   | -1.600    | Koch-Weser, 1984                                                                                                                                                             |
| Soumousso                      | 11.017   | -4.050    | Hervy & Legros, 1981a; 1981b                                                                                                                                                 |
| Takaboungou                    | 14.650   | 0.150     | Koch-Weser, 1984                                                                                                                                                             |
| Tambao                         | 14.800   | 0.083     | Koch-Weser, 1984; Van Cakenberghe & De, Vree 1994                                                                                                                            |
| Tassamakat                     | 14.350   | -0.417    | Koch-Weser, 1984                                                                                                                                                             |
| Tatarko                        | 13.467   | -0.317    | Koopman et al., 1978; Koch-Weser, 1984; Van Cakenberghe & De Vree, 1998                                                                                                      |
| Tazawat (Oursi) [= Tasamakat?] | 14.350   | -0.417    | MNHN                                                                                                                                                                         |
| Terhar                         | 14.683   | -0.867    | Koch-Weser, 1984                                                                                                                                                             |
| Tin-A-kof                      | 14.967   | -0.167    | Koch-Weser, 1984                                                                                                                                                             |
| Tin-Ediar                      | 14.667   | -0.567    | Koch-Weser, 1984                                                                                                                                                             |
| Гопі                           | 12.650   | -3.983    | Koch-Weser, 1984                                                                                                                                                             |
| Tounté                         | 14.650   | -0.900    | Koch-Weser, 1984                                                                                                                                                             |
| Voko                           | 11.633   | -1.267    | Bergmans, 1991                                                                                                                                                               |

# Table 1/2. Gazetteer of previously records: data from publications and museums from 1964 to 1993.

| Locality                                   | Site                               | Latitude | Longitude | Date              | # of nets | Total capture effort |
|--------------------------------------------|------------------------------------|----------|-----------|-------------------|-----------|----------------------|
| Nazinon River (near)                       | along river                        | 11.8200  | -1.6733   | 17-18.4.2002      | 2         | 16                   |
| Djibo                                      | near pond                          | 14.1071  | -1.6157   | 29.10.2004        | 1         | 5                    |
| Oursi                                      | Near Oursi pond                    | 14.6680  | -0.4750   | 31.10 - 1.11.2004 | 2         | 6                    |
| Markoye                                    | next to inselberg                  | 14.6242  | 0.0432    | 3.11.2004         | 1         | 3,5                  |
| Karfiguéla (Comoé River, near Banfora)     | gallery forest of Comoé riveré     | 10.6890  | -4.8085   | 27.2.2005         | 1         | 4                    |
| Bama                                       | orchard (pawpaw)                   | 11.3974  | -4.4022   | 1.3.2005          | 1         | 12                   |
| Dafra (gallery forest)                     | gallery forest                     | 11.1102  | -4.2505   | 1.12.2006         | 2         | 6                    |
| Hameau de Dafra (Koro village)             | village                            | 11.1000  | -4.2333   | 1.12.2006         | DR        |                      |
| Dafra                                      | near river & orchards              | 11.1083  | -4.2500   | 3.12.2006         | 2         | 6                    |
| Cascade de Kou (Koro village)              | forest                             | 11.1523  | -4.2072   | 4.12.2006         | 2         | 6                    |
| Kourouma (gallery forest)                  | dry forest close to gallery forest | 11.6581  | -4.7470   | 7.12.2006         | 2         | 24                   |
| Kourouma (village)                         | village                            | 11.6159  | -4.7992   | 9.12.2006         | DR        |                      |
| Toussiana (Banfora cliff)                  | gallery forest                     | 10.8443  | -4.5987   | 25.4.2008         | 2         | 6                    |
| Toussiana (near)                           | degraded gallery forest            | 10.8478  | -4.6001   | 26.4.2008         | 1         | 3,5                  |
| Koba River (gallery forest, near Dounonso) |                                    | 10.8466  | -4.1075   | 30.4.2008         | 2         | 8                    |
| Koba River (savanna, near Dounonso)        | savanna                            | 10.8460  | -4.1062   | 1.5.2008          | 2         | 15                   |
| 10                                         | 16                                 |          |           | 17                | 23        | 121                  |

Table 2. Sampling sites, dates of capture, number of nets used and capture effort made from 2002 to 2008. Capture effort = the number of hours during which a 12 m-net was open overnight; # of nets = number of nets used; DR = day roost.

| Locality                | Site         | Latitude | Longitude | Description                                | Date              | # of nets | Capture<br>effort |
|-------------------------|--------------|----------|-----------|--------------------------------------------|-------------------|-----------|-------------------|
|                         | Site 1       | 9 9560   | -4 6768   | Folonzo village                            | 21.4.2008         | 6         | 30                |
|                         | Site 2       | 9.9323   | -4.6085   | near Comoé river                           | 22.4.2008         | 4         | 48                |
| F.C. & R.P.F. Comoé-    | Site 3       | 9.9958   | -4.8217   | near termite mound                         | 23.4.2008         | 5         | 60                |
| Léraba                  | Site 4       | 9.8935   | -4.7411   | near water way                             | 24.4.2008         | 5         | 48                |
|                         | Site 5       | 9.7613   | -4.5908   | near dense forest at Guibourtia copalifera | 25.4.2008         | 4         | 48                |
|                         | Site 6       | 9.7043   | -4.5866   | near Confluent Comoé-Leraba                | 26.4.2008         | 4         | 96                |
| F. C. Niangoloko        | Site 1       | 10.2149  | -4.9644   | near road                                  | 28.4.2008         | 6         | 72                |
|                         | Site 2       | 10.2427  | -4.9118   | in front of cave                           | 29.4.2008         | 4         | 32                |
|                         | Site 1       | 12.3975  | -1.4891   | near Khaya senegalensis                    | 17.6.2008         | 4         | 32                |
| P.U. Bangr-Weoogo       | Site 2       | 12.3963  | -1.4927   | near pond                                  | 18.6.2008         | 4         | 30                |
|                         | Site 3       | 12.3967  | -1.4890   | near pond                                  | 19.6.2008         | 2         | 24                |
|                         | Site 1       | 10.9437  | -4.4776   | near road                                  | 7.8.2008          | 2         | 12.5              |
| F.C. Péni               | Site 2       | 10.9315  | -4.4779   | shrubby savanna                            | 8.8.2008          | 4         | 20                |
|                         | Site 3       | 10.9301  | -4.4912   | woodland                                   | 9.8.2008          | 5         | 55                |
|                         | Site 1       | 11 5624  | -4 1222   | shrubby savanna                            | 11 –<br>12 8 2008 | 12        | 132               |
| R.B. Mare aux           | Site 2       | 11.5024  | -4.1053   | woodland (near forest)                     | 13.8.2008         | 6         | 66                |
| Hippopotames            | Site 3       | 11.5455  | -4 1042   | shrubby sayanna(near forest)               | 14.8.2008         | 6         | 66                |
|                         | Site 4       | 11.5395  | -4.1042   | dense forest                               | 15.8.2008         | 6         | 66                |
|                         | Civ. 1       | 11.5400  | -4.1041   |                                            | 16 -              | 0         | 70                |
| F.C. Kou                | Site 1       | 11.1828  | -4.4427   | woodland (near forest)                     | 17.8.2008         | 8         | 72                |
|                         | Site 2       | 11.1956  | -4.4418   | shrubby savanna (near forest)              | 18.8.2008         | 4         | 44                |
| F.C. Niouma             | Site 1       | 12.9228  | -2.6798   | shrubby savanna                            | 30.10.2008        | 4         | 22                |
| T.C. Iviounia           | Site 2       | 12.9363  | -2.6880   | clear forest                               | 31.10.2008        | 6         | 45                |
|                         | Site 3       | 12.9198  | -2.6986   | near pond                                  | 1.11.2008         | 6         | 54                |
|                         | Site 1       | 12.7528  | -2.3830   | near pond                                  | 2.11.2008         | 5         | 40                |
| F.C. Toessé             | Site 2       | 12.7825  | -2.3977   | near stream                                | 3.11.2008         | 6         | 46.5              |
|                         | Site 3       | 12.7534  | -2.3829   | near pond                                  | 4.11.2008         | 4         | 31                |
|                         | Site 1       | 12.6537  | -3.3201   | shrubby savanna                            | 24.11.2008        | 4         | 39.3              |
| F.C. Sa                 | Site 2       | 12.6329  | -3.2664   | gallery forest (except forest)             | 25.11.2008        | 6         | 52                |
|                         | Site 3       | 12.6570  | -3.3186   | woodland (near river)                      | 26.11.2008        | 6         | 45                |
| F.C. Toroba             |              | 12 5120  | 2 2226    | gallery forest (near river)                | 28 -              | 13        | 152.8             |
|                         | Site 1       | 12.5120  | -3.2236   | shrubby sayanna                            | 29.11.2008        | 4         | 26                |
| F.C. Kari               | Site I       | 12.4341  | -3.1122   | shrubby savanna                            | 1 -               | 4         | 30                |
|                         | Site 2       | 12.4772  | -3.1366   | gallery forest (near river)                | 2.12.2008         | 15        | 180               |
| F.C. Tissé              |              | 12.2487  | -2.8692   | gallery forest (near river)                | 3.12.2008         | 7         | 82.3              |
| F.C. Oualou             |              | 12.3922  | -2.8672   | gallery forest                             | 5.12.2008         | 8         | 46                |
| Karfiguéla (Cascades de | Site 1       |          |           | cave, hill, river                          | 17 -              | 14        | 47.5              |
| Bantora)                | Site 2       | 10.7232  | -4.8222   | aava hill niver                            | 18.2.2009         | 7         | 10.5              |
| Dies de Cindeu          | Site 2       | 10.7215  | -4.8211   | cave, mil, river                           | 19.2.2009         | 7         | 21.0              |
| Pics de Sindou          |              | 10.6535  | -5.1536   | herbaceous steppe with some woody          | 21.2.2009         | /         | 21.9              |
| Mágyáni                 | Caus 1       | 10.6542  | -5.3894   | hill cause                                 | 23.2.2009         | 4<br>DB   | 5.5               |
| Negueni                 | Cave 1       | 10.6545  | -5.3890   | hill, cave                                 | 23.2.2009         | DR        |                   |
|                         | Cave 2       | 10.6656  | -5.4075   | mil, cave                                  | 25.2.2009         | DK        | 15.5              |
| Tauasiana               | Site 1       | 10.8466  | -4.5978   | gallery forest (along stream)              | 25.2.2009         | 5         | 15.5              |
| Toussiana               | Site 2       | 10.8442  | -4.5978   | damaa faraat                               | 26.2.2009         | 4         | 9                 |
|                         | Site 1       | 10.8446  | -4.5987   | herbaceous steppe (along streem)           | 27.2.2009         | 7         | 20                |
| Galgouli                | Site 2       | 9.9678   | -3.4438   | nerbaceous steppe (along stream)           | 28.4.2009         | 6         | 29.8              |
| Laronóni                | Site 1       | 9.9689   | -3.3735   | gallery lorest (along stream)              | 29.4.2009         | 4         | 20                |
| Loropeni                | Site 2       | 10.3040  | -3.4832   | gallery                                    | 1 5 2009          | 4         | 20                |
|                         | Site 1       | 10.3120  | -3.5323   | woodland (along dam)                       | 2.5.2009          | 5         | 22.8              |
| Batié                   | Site 2       | 9.8630   | -2.91/1   | woodland (rupicolous bar)                  | 2.5.2009          | 1         | 23.8              |
|                         | Site 2       | 9.8771   | -2.9336   | woodiand (rupicolous bar)                  | 5.5.2009          | -         | 18                |
| Mouhoun River           |              | 9.5535   | -2.7601   | gallery forest (along river)               | 4.5.2009          | 5         | 25                |
| F.C.Koulbi              |              | 9.6522   | -2.8376   | gallery forest (along river)               | 5.5.2009          | 6         | 25.5              |
| Bambassou               |              | 9.9837   | -2.9059   | gallery forest (along river)               | 6.5.2009          | 6         | 31.5              |
| Tikitianao              |              | 10.5570  | -3.3130   |                                            | 7.5.2009          | DR        |                   |
| Dana Matiana L. J., W/  | Site 1       | 11.5160  | 2.0701    | gallery forest                             | 11.8.2009         | 5         | 11.3              |
| Fare National du W      | Site 2       | 11.5117  | 2.0723    | gallery forest                             | 12.8.2009         | 6         | 53.3              |
|                         | Saboarkori 1 | 11 6720  | 1 5615    | shrubby sayanna (along mountain chain)     | 14 8 2009         | 7         | 38.5              |
|                         | Saboarkori 2 | 11.6720  | 1.5617    | woodland (along mountain chain)            | 15 8 2009         | 5         | 56.3              |
| Chaine de Cobroncess    | Virini       | 11.6919  | 1.5842    | shrubby sayanna (along mountain chain)     | 16.8 2009         | 5         | 33                |
| chame de Obonangou      | Virini covo  | 11.7354  | 1.0010    | cave                                       | 17.8 2009         | ں<br>قرآ  | 55                |
|                         | Tindoncov    | 11./105  | 1.6055    |                                            | 17.8.2009         | DR        |                   |
|                         | rmuangou     | 11.6922  | 1.5842    | Cave                                       | 17.8.2009         | DK        |                   |

Table 3/1. Sampling characteristics for the BIOTA project data collection from 2008 to 2009 (see belove) (continued).

| Locality  | Site   | Latitude | Longitude | Description                                | Date      | # of nets | Capture<br>effort |
|-----------|--------|----------|-----------|--------------------------------------------|-----------|-----------|-------------------|
| Diapaga   |        | 12.0765  | 1.7871    |                                            | 18.8.2009 | DR        |                   |
| Pama      |        | 11.3207  | 0.7241    | woodland (near pond)                       | 19.8.2009 | 4         | 22.5              |
| Outourou  | Site 1 | 10.6145  | -5.4100   | gallery (between hill)                     | 18.9.2009 | 9         | 35                |
|           | Site 1 | 10.6086  | -5.3094   | gallery forest                             | 19.9.2009 | 4         | 27.5              |
| F.C. Lera | Site 2 | 10,5973  | -5.3130   | gallery forest                             | 20.9.2009 | 8         | 24                |
|           | Site 3 | 10.5976  | -5.3049   | gallery forest                             | 21.9.2009 | 8         | 22                |
|           | Site 1 | 10.7532  | -5.2834   | gallery forest                             | 22.9.2009 | 8         | 40                |
| Kankalaba | Site 2 | 10.7660  | -5.3056   | gallery forest                             | 23.9.2009 | 9         | 42.5              |
|           | Site 3 | 10.7685  | -5.3055   | gallery forest                             | 24.9.2009 | 8         | 39                |
|           | Site 1 | 10.6917  | -5.0991   | shrubby savanna (between dam and mountain) | 27.9.2009 | 8         | 96                |
| Niofila   | Site 2 | 10.7095  | -5.1162   | woodland (near mountain)                   | 28.9.2009 | 4         | 18                |
|           | Site 3 | 10.6859  | -5.1270   | forest                                     | 29.9.2009 | 9         | 108               |
| 32        | 72     |          |           |                                            | 74        | 399       | 2937.3            |

Table 3/2. Sampling characteristics for the BIOTA project data collection from 2008 to 2009 (sampling sites, capture dates, number of nets used and capture effort). F.C.: Protected forest; R.P.F.: Partial wildlife reserve; P.U.: Urban park; B.R.: Biosphere reserve; DR: day roost. # of nets = number of nets. Capture effort = number of hours during which a net of 12 m is open overnight (i.e. this number is divided by two for a 6m-net).

the various areas, for the preparation of measurement Tables and reference collections of the University of Ouagadougou.

Body measurement (accuracy 0.1 mm) and cranial measurements (accuracy 0.01 mm) were conducted on these specimens. The cranial measurements are performed under a binocular magnifying glass branded Leica MZ8. Body measurements are: HB (head and body length from tip of snout to posterior margin of anus); Tail (length of tail from posterior margin of anus to tip of tail); Tot (total length, HB + Tail); Ear (length of ear from lower margin of conch to tip of ear); Trag (length of tragus along posterior margin from base to tip); FA (length or forearm including carpals); 3Met (length of metacarpal of third digit, excluding carpals); 3Ph1 (length of first phalanx of third digit); 3Ph2 (length of second phalanx of third digit); 3Ph3 (length of third phalanx of third digit); 4Met (length of metacarpal of fourth digit, excluding carpals); 4Ph1 (length of first phalanx of fourth digit; 4Ph2 (length of second phalanx of third digit); 5Met (length of metacarpal of fifth digit, excluding carpals); 5Ph1 (length of first phalanx of fifth digit); 5Ph2 (length of second phalanx of fifth digit); Tib: length of tibia; HF (length of hind foot, including claws). Cranial measurements are: C-C - width across crowns of upper canines, Mn-Mn - width across crowns of posterior upper molars, C-Mn length of upper (maxillary) tooth row from front of canine to back of posterior molar.

### Mapping of species distribution

To develop distribution maps of each species across the country, the Quantum GIS 1.8.0 software was used. Country limits and phytogeographic areas according to Fontès & Guinko (1995) were also used. These information were used in Quantum GIS 1.8.0 to produce a background map. On this map, we added thereafter, for each species, the locations where species was recorded (captured or observed).

### RESULTS

Data collected between 1964 and 1993 include 1,669 specimens belonging to 36 species, collected at 77 sites.

Recent data (between 2002 and 2009) were collected during two phases; between April 2002 and May 2008 at 16 sites with 172 specimens belonging to 17 species identified; and between April 2008 and September 2009 (72 sites) with 1,639 specimens belonging to 45 species identified.

The combination of previously and recent data represent 164 sites with a total of 3,480 specimens examined. Their total give 51 species derived from the 46 years of observation. These 51 species were spread over 24 genera and 9 families, including one frugivorous and 8 insectivorous families. Insectivorous have greater species diversity compared to frugivorous. Frugivorous have 7 species in a single family, Pteropodidae and Insectivorous have 44 species distributed into 8 families: Hipposideridae (7), Megadermatidae (1), Rhinolophidae (3), Rhinopomatidae (2), Emballonuridae (3), Nycteridae (5), Molossidae (6) and Vespertilionidae (17).

# Family PTEROPODIDAE Genus *Eidolon* Rafinesque, 1815 *Eidolon helvum* (Kerr, 1792)

This species is found in almost all phytogeographic zones of Burkina Faso (Fig. 2). It is a migratory species (Thomas, 1983; Richter & Cumming, 2008; Ossa et al., 2012). Eidolon helvum moves from the forest zone during the wet season to northern woodlands and savannas, and may even reach the edge of the desert (Horáček et al., 2000). It forms colonies of thousands of individuals, which are frequently located near cities or villages. From 2009 to 2014 each year a large colony roosts in the urban park Bangr-Weoogo in downtown Ouagadougou. Some individuals have been observed during the month of May in the Southwest in the village of Tikitianao but the entire colony had not yet arrived. Another colony was also observed in August in the city of Diapaga in the Southeast.

# Genus *Epomophorus* Bennett, 1836 *Epomophorus gambianus* (Ogilby, 1835)

*Epomophorus gambianus* is widely distributed in the Sudanian zone of Burkina Faso, though with fewer localities in the northern part (Fig. 2). The species is commonly found in West Africa and widely distributed in both Guinean and Sudanian savannas while only a few specimens have been found in the Sahelian zone. The latter zone with Acacia and deciduous shrubs seems to represent the northern limit of the species (Boulay & Robbins, 1989).

# Genus Hypsignathus Allen, 1861 Hypsignathus monstrosus H. Allen, 1862

*Hypsignathus monstrosus* has been recorded from the southwest of the South-Sudanian area (Fig. 2). This species is mainly found in the forest

zone, but extends into savannas along gallery forests and forest islands (Bergmans, 1989; Fahr et al., 2006). As such, localities in southern Burkina Faso are probably near its range northern limit (Koopman et al., 1978).

# Genus *Lissonycteris* K. Andersen, 1912 *Lissonycteris angolensis* (Bocage, 1898)

This species occurs in the southwestern part of Burkina Faso (Fig. 2). Its presence is probably due to the fact that it is a species extending from the forest areas of West Africa to the wet savannas. In this part of the country, *Lissonycteris angolensis* is mainly found in hilly areas and cliffs that provide suitable day roosts such as caves and rock overhangs. We located several day roosts in the cliffs of Banfora.

# Genus *Micropteropus* Matschie, 1899 *Micropteropus pusillus* (Peters, 1868)

*Micropteropus pusillus* is less widely distributed in Burkina Faso than *Epomophorus gambianus*, with most records from woodlands of the Sudanian zone and only few records in the North-Sudanian area (Fig. 2). Although this species ranges up to 14°N in West Africa (Owen-Ashley & Wilson, 1998), no specimens have been captured so far in the Sahelian area of Burkina Faso.

# Genus Nanonycteris Matschie, 1899 Nanonycteris veldkampii (Jentink, 1888)

*Nanonycteris veldkampii* was captured in the Sudanian zone (Fig. 2). This species migrates during the wet season from the forest zone to the northern Sudanian zone (Thomas, 1983). In agreement with this, all captures were made during the wet season in protected forests, gallery forests along Gobnangou range and next to water points.

Averages of body measurements (except Ear, Tib, and HF) and cranial measurements of males are smaller than the measurements of females. The maximum measurements of the forearm and wings and the cranial measurement (MM) of males are lower than the minimum measurements of females (Table 4). The wings of females are longer than those of males.



Figure 2. Distribution of Pteropodidae in Burkina Faso.

|      |                                                                                                                                                           |       |       |      |      |    |            |      |        | E     | idolon h | elvum    |       |       |       |        |      |      |      |       |                                |                  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------|------|----|------------|------|--------|-------|----------|----------|-------|-------|-------|--------|------|------|------|-------|--------------------------------|------------------|
| Sex  |                                                                                                                                                           | BM    | TL    | Т    | Е    | TR | FA         | 3Met | 3Ph1   | 3Ph2  | 3Ph3     | 4Met     | 4Ph1  | 4Ph2  | 5Met  | 5Ph1   | 5Ph2 | TB   | HF   | C-C   | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
| 3    |                                                                                                                                                           | 258.0 |       | 24.7 | 27.6 |    | 115.2      | 81.0 | 50.1   | 83.2  |          | 79.9     | 39.7  | 52.3  | 68.5  | 33.0   | 36.0 | 49.6 | 28.4 | 10.45 | 17.23                          | 21.90            |
|      |                                                                                                                                                           |       |       |      |      |    |            |      |        | Epome | ophorus  | gambiar  | ius   |       |       |        |      |      |      |       |                                |                  |
| Sex  |                                                                                                                                                           | BM    | TL    | Т    | Е    | TR | FA         | 3Met | 3Ph1   | 3Ph2  | 3Ph3     | 4Met     | 4Ph1  | 4Ph2  | 5Met  | 5Ph1   | 5Ph2 | TB   | HF   | C-C   | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
|      | Х                                                                                                                                                         | 127.8 | 138.1 | 6.8  | 27.6 |    | 89.7       | 65.9 | 40.5   | 53.7  |          | 62.6     | 30.7  | 32.7  | 63.3  | 30.5   | 30.4 | 39.3 | 21.0 | 10.14 | 14.09                          | 21.13            |
| 77   | Min                                                                                                                                                       | 120.0 | 127.5 | 4.6  | 26.4 |    | 88.8       | 64.7 | 39.6   | 49.6  |          | 61.8     | 29.2  | 30.2  | 62.2  | 28.9   | 29.0 | 37.8 | 20.1 | 9.97  | 13.77                          | 20.26            |
| 00   | Max                                                                                                                                                       | 144.0 | 143.7 | 9.3  | 29.6 |    | 92.1       | 67.1 | 41.7   | 56.5  |          | 63.4     | 31.3  | 34.2  | 64.0  | 31.2   | 31.9 | 40.5 | 21.7 | 10.49 | 14.65                          | 21.80            |
|      | n=                                                                                                                                                        | 4     | 4     | 4    | 4    |    | 4          | 4    | 4      | 4     |          | 4        | 4     | 4     | 4     | 4      | 4    | 4    | 4    | 4     | 4                              | 4                |
|      | Х                                                                                                                                                         | 87.5  | 132.2 | 8.3  | 26.7 |    | 86.1       | 64.0 | 40.0   | 51.9  |          | 60.8     | 29.6  | 32.5  | 61.8  | 30.2   | 29.1 | 36.9 | 20.7 | 9.57  | 13.74                          | 19.92            |
| 0.0  | Min                                                                                                                                                       | 64.0  | 125.6 | 6.0  | 25.2 |    | 84.0       | 61.2 | 39.1   | 50.3  |          | 58.4     | 27.3  | 31.3  | 59.5  | 29.0   | 27.9 | 36.2 | 19.6 | 9.27  | 13.29                          | 18.64            |
| ΥŤ   | Max                                                                                                                                                       | 112.0 | 137.8 | 10.1 | 28.3 |    | 88.7       | 66.5 | 41.1   | 53.1  |          | 63.4     | 31.5  | 33.5  | 63.3  | 31.9   | 30.2 | 37.4 | 22.3 | 9.79  | 14.57                          | 20.84            |
|      | n=                                                                                                                                                        | 4     | 4     | 4    | 4    |    | 4          | 4    | 4      | 4     |          | 4        | 4     | 4     | 4     | 4      | 4    | 4    | 4    | 4     | 4                              | 4                |
|      |                                                                                                                                                           |       |       |      |      |    |            |      |        | Lisso | nycteris | angolen  | sis   |       |       |        |      |      |      |       |                                |                  |
| Sex  |                                                                                                                                                           | BM    | TL    | Т    | Е    | TR | FA         | 3Met | 3Ph1   | 3Ph2  | 3Ph3     | 4Met     | 4Ph1  | 4Ph2  | 5Met  | 5Ph1   | 5Ph2 | TB   | HF   | C-C   | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
|      | Х                                                                                                                                                         | 55.0  | 104.2 | 13.1 | 20.8 |    | 69.6       | 50.6 | 34.8   | 42.0  |          | 49.0     | 26.0  | 27.2  | 47.9  | 22.6   | 24.5 | 30.0 | 19.9 | 7.44  | 10.84                          | 13.81            |
|      | $\pm$ SD                                                                                                                                                  | 4.1   | 6.8   | 1.0  | 1.0  |    | 2.8        | 2.1  | 1.7    | 2.1   |          | 1.8      | 1.2   | 1.0   | 1.8   | 1.0    | 1.4  | 1.3  | 1.6  | 0.22  | 0.52                           | 0.69             |
| 3°   | Min                                                                                                                                                       | 46.0  | 98.3  | 11.2 | 19.1 |    | 66.3       | 47.9 | 32.3   | 39.4  |          | 46.1     | 24.1  | 25.7  | 45.0  | 20.5   | 22.0 | 27.9 | 18.1 | 7.16  | 10.19                          | 13.11            |
|      | Max                                                                                                                                                       | 58.0  | 119.5 | 14.2 | 22.3 |    | 73.3       | 55.1 | 38.0   | 45.7  |          | 51.8     | 27.7  | 29.1  | 50.6  | 23.8   | 26.2 | 32.0 | 23.0 | 7.74  | 11.76                          | 14.87            |
|      | n=                                                                                                                                                        | 6     | 7     | 7    | 7    |    | 7          | 7    | 7      | 7     |          | 7        | 7     | 7     | 7     | 7      | 7    | 7    | 7    | 5     | 6                              | 6                |
|      | Micropteropus pusillus<br>Sex BM TL T E TR FA 3Met 3Ph1 3Ph2 3Ph3 4Met 4Ph1 4Ph2 5Met 5Ph1 5Ph2 TB HF C-C M <sup>2</sup> -M <sup>3</sup> C-M <sup>3</sup> |       |       |      |      |    |            |      |        |       |          |          |       |       |       |        |      |      |      |       |                                |                  |
| Sex  |                                                                                                                                                           | BM    | TL    | Т    | E    | TR | FA         | 3Met | 3Ph1   | 3Ph2  | 3Ph3     | 4Met     | 4Ph1  | 4Ph2  | 5Met  | 5Ph1   | 5Ph2 | TB   | HF   | C-C   | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
|      | х                                                                                                                                                         | 29.8  | 78.2  | 7.9  | 16.3 |    | 51.9       | 38.6 | 23.7   | 31.4  |          | 38.1     | 17.4  | 20.3  | 37.5  | 17.6   | 18.5 | 22.7 | 13.3 | 6.16  | 10.03                          | 9.14             |
|      | ± SD                                                                                                                                                      | 2.6   | 4.0   | 0.9  | 0.6  |    | 1.1        | 1.3  | 0.6    | 1.4   |          | 1.1      | 0.5   | 0.7   | 0.9   | 0.5    | 0.9  | 0.5  | 0.7  | 0.21  | 0.39                           | 0.39             |
| 88   | Min                                                                                                                                                       | 27.0  | 72.9  | 6.9  | 15.4 |    | 50.2       | 36.4 | 22.7   | 28.8  |          | 36.2     | 16.6  | 19.3  | 36.0  | 16.7   | 17.0 | 22.2 | 11.9 | 5.80  | 9.40                           | 8.42             |
|      | Max                                                                                                                                                       | 34.0  | 84.2  | 9.0  | 16.9 |    | 53.2       | 40.1 | 24.6   | 32.6  |          | 39.5     | 18.1  | 21.4  | 38.5  | 18.2   | 19.7 | 23.2 | 13.9 | 6.46  | 10.60                          | 9.50             |
|      | n=                                                                                                                                                        | 5     | 5     | 5    | 5    |    | 5          | 5    | 5      | 5     |          | 5        | 5     | 5     | 5     | 5      | 5    | 5    | 5    | 5     | 5                              | 5                |
|      | X                                                                                                                                                         | 25.6  | 77.1  | 7.3  | 16.7 |    | 51.3       | 37.7 | 24.1   | 31.8  |          | 37.4     | 17.4  | 20.2  | 36.5  | 17.5   | 18.3 | 21.7 | 13.6 | 5.93  | 9.25                           | 8.63             |
| Ϋ́   | Min                                                                                                                                                       | 21.0  | 71.7  | 6.4  | 15.8 |    | 49.3       | 36.7 | 23.0   | 29.5  |          | 36.0     | 16.7  | 19.4  | 34.7  | 17.1   | 17.8 | 20.9 | 13.3 | 5.61  | 8.86                           | 8.22             |
|      | Max                                                                                                                                                       | 34.0  | 82.4  | 8.3  | 17.7 |    | 54.2       | 39.1 | 25.6   | 32.5  |          | 39.1     | 18.9  | 21.2  | 37.9  | 18.2   | 19.0 | 23.2 | 14.0 | 6.09  | 9.90                           | 9.29             |
|      | n=                                                                                                                                                        | 5     | 4     | 4    | 4    |    | 4          | 4    | 4      | 4     |          | 4        | 4     | 4     | 4     | 4      | 4    | 4    | 4    | 4     | 4                              | 4                |
| S.au |                                                                                                                                                           | DM    | TI    | т    | Б    | тр | EA         | 2Mat | 2 Dh 1 | 2062  | 2Dh2     | AMat     | 4Db1  | 4062  | 5 Mat | 5 Dh 1 | 5062 | TD   | LIE  | 6.6   | M3 M3                          | C M <sup>3</sup> |
| Sex. | v                                                                                                                                                         | 10.4  | 67.2  | 5.6  | 16.2 | IK | ГА<br>46.7 | 34.5 | 22.0   | 28.0  | 3113     | 33.6     | 416.1 | 4FII2 | 22.9  | 15.2   | 15.2 | 10.0 | 12.7 | 5.03  | 6.05                           | 7.12             |
|      |                                                                                                                                                           | 2.1   | 4.2   | 1.0  | 10.5 |    | 1 2        | 1.0  | 0.0    | 1.8   |          | 1 1      | 0.7   | 0.0   | 1 2   | 0.8    | 0.8  | 0.0  | 0.4  | 0.16  | 0.95                           | 0.21             |
| 22   | Min                                                                                                                                                       | 15.0  | 61.0  | 3.0  | 14.7 |    | 45.4       | 32.4 | 21.1   | 25.7  |          | 31.6     | 15.2  | 16.3  | 31.7  | 14.2   | 14.2 | 18.0 | 11.0 | 4 87  | 6.64                           | 6.86             |
| 00   | Max                                                                                                                                                       | 26.0  | 76.3  | 6.7  | 17.7 |    | 48.9       | 35.8 | 23.7   | 30.9  |          | 35.0     | 17.1  | 19.2  | 36.2  | 16.8   | 16.8 | 20.6 | 13.2 | 5 31  | 7 22                           | 7 54             |
|      | n=                                                                                                                                                        | 8     | 8     | 8    | 8    |    | 8          | 8    | 8      | 8     |          | 8        | 8     | 8     | 8     | 8      | 8    | 8    | 8    | 7     | 7                              | 7                |
| 0    | n                                                                                                                                                         | 28.0  | 74.9  | 73   | 17.4 |    | 54.5       | 41.8 | 26.4   | 34.1  |          | 40.7     | 18.4  | 19.6  | 40.8  | 17.8   | 18.0 | 22.6 | 13.0 | 5 46  | 7.26                           | 7.68             |
| +    |                                                                                                                                                           | 21.0  | 69.1  | 5.8  | 15.8 |    | 50.8       | 39.4 | 24.5   | 31.9  |          | 37.3     | 17.9  | 19.7  | 37.5  | 17.3   | 17.5 | 18.9 | 12.7 | 5 31  | 7.20                           | 7.36             |
| +    |                                                                                                                                                           | 21.0  | 07.1  | 2.0  | 10.0 |    | 50.0       | 57.1 | 2110   | Rous  | ettus ae | ovntiacu | 5     | 19.17 | 57.5  | 17.5   | 17.0 | 10.5 | 12.7 | 0.01  | 7101                           | 7.50             |
| Sex  |                                                                                                                                                           | BM    | TL    | Т    | E    | TR | FA         | 3Met | 3Ph1   | 3Ph2  | 3Ph3     | 4Met     | 4Ph1  | 4Ph2  | 5Met  | 5Ph1   | 5Ph2 | TB   | HF   | C-C   | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
|      | x                                                                                                                                                         | 144.8 | 136.1 | 22.1 | 21.7 |    | 98.0       | 64.8 | 42.4   | 58.3  | 51115    | 63.0     | 33.6  | 36.8  | 60.7  | 30.9   | 28.3 | 45.1 | 26.0 | 9.41  | 13.50                          | 17.29            |
|      | Min                                                                                                                                                       | 130.0 | 133.6 | 18.0 | 20.9 |    | 93.5       | 63.0 | 41.9   | 54.6  |          | 61.0     | 32.3  | 36.0  | 58.3  | 30.7   | 28.1 | 42.8 | 20.0 | 8.93  | 13.28                          | 16.86            |
| 33   | Max                                                                                                                                                       | 162.0 | 139.7 | 26.2 | 22.5 |    | 101.3      | 66.3 | 42.9   | 60.5  |          | 64.3     | 35.7  | 37.7  | 62.6  | 31.1   | 28.4 | 48.0 | 30.2 | 10.12 | 13.63                          | 17.65            |
|      | n=                                                                                                                                                        | 4     | 3     | 4    | 4    |    | 4          | 3    | 3      | 3     |          | 3        | 3     | 3     | 3     | 3      | 3    | 4    | 4    | 4     | 4                              | 4                |
|      |                                                                                                                                                           |       |       |      |      |    |            |      | -      |       |          |          | -     |       |       |        |      |      |      |       |                                |                  |

Table 4. Measurements of Pteropodidae from Burkina Faso.

# Genus *Rousettus* Gray, 1821 *Rousettus aegyptiacus* (E. Geoffroy, 1810)

*Rousettus aegyptiacus* was recorded from the western and eastern part of the South-Sudanian zone (Fig. 2). In the Sudanian zone, *R. aegyptiacus* has been captured in rocky formations that provide a wide variety of day roosts for this cave-dwelling species (Hayman, 1967; Qumsiyeh, 1985). Indeed, several specimens have been captured in the cliffs of Banfora where their shelters have been observed and where one of the caves contained about 500 to 2000 individuals. Two other specimens have been captured along Gobnangou range.

It looks like *Lissonycteris angolensis* but the averages of body measurements (except Ear, HF)

and cranial measurements of *L. angolensis* are lower than those of *R. aegyptiacus*. In addition, maximum measurements (except Ear, HF) of *L. angolensis* are below the minimum measurements of *R. aegyptiacus* (Table 4).

# Family HIPPOSIDERIDAE Genus Asellia Gray, 1838 Asellia tridens (E. Geoffroy, 1813)

*Asellia tridens* is particularly found in North and Northeast Africa (Hayman, 1967; Horáček et al., 2000). This desert species extends into the North-Sahelian zone of Burkina Faso (Fig. 3), which is probably its southern limit.

# Genus *Hipposideros* Gray, 1831 *Hipposideros abae* J. A. Allen, 1917

Hipposideros abae is known in forest areas as well as in woody savannas (Aellen, 1952). According to Koopman et al. (1978), it probably reaches its Northern limit in Burkina Faso. Indeed, all specimens are located only in the Southwest in the South-Sudanian zone (Fig. 3). Most specimens captured during the BIOTA collect come from a cave where H. tephrus, H. ruber, Nycteris macrotis and Rhinolophus landeri were also captured. Hipposideros abae is known to present two color phases, gray and red, like the other members of the family (Rosevear, 1965). However, all specimens captured during the late BIOTA collect were shows almost the same orange-yellow color except one specimen captured at Kankalaba which shows a darker color tending towards red.

Males are not different from females (Table 5)

### Hipposideros cyclops (Temminck, 1853)

Hipposideros cyclops is located in the extreme Southwest in the South-Sudanian zone (Fig. 3). All three specimens have been captured in the protected forest and partial wildlife reserve of Comoé-Léraba, next to a dense forest at Guibourtia copalifera and not far from the Comoé-Léraba confluence. This forest species (Rosevear, 1965) is common in the gallery forests and forest islands of the National Park of Comoé in Ivoiry Coast. However, it extends from forests into savannas (Fahr, 1996). It would therefore be extended into this part of Burkina Faso near the Ivorian border. The number of our specimens does not allow us to conclude a sexual dimorphism (Table 5). However, sexual dimorphism is pronounced, with females being larger than males (Decher & Fahr, 2005).

# Hipposideros jonesi Hayman, 1947

This species has been found in the southwest (Sudanian zone) of the country and in the extreme southeast of the South-Sudanian zone (Fig. 3). One orange-yellow phase was observed on the captured specimens.

### Hipposideros ruber (Noack, 1893)

Hipposideros ruber is widely distributed and is

located in all phytogeographic areas (Fig. 3). It is more common in the South being gradually rare towards the North. The specimens have been captured in an arborous savanna along a rupicolous bar in a mountain range, at the entrance to a cave, in a gallery forest, the cliffs of Banfora, a wooded savanna along a dam, a shrubby savanna between a mountain and a dam, a wooded savanna near a mountain and a cave, and in a wooded savanna next to a managed water point near the Nazinon river and not far from a water point. The captured specimens showed two phases of color: some were brown and others orange-yellow. The cytochrome b from several specimens has been sequenced by CBGP (J.-F. Cosson & S. Chollet, unpubl. data). According to these data, two specimens from Dafra, one specimen from Djibo and one specimen from Koba River belong to clade D1 as designated by Vallo et al. (2009), while seven specimens from Toussiana belong to clade C1. Twenty-two individuals (2 males, 19 females, 1 unsexed, none sequenced) from Toussiana, site 1, called at 140.8±1.0 (138.5-142.3) kHz. One male from Karfiguéla called at 140.2 kHz.

#### Hipposideros tephrus Cabrera, 1906

It is located in the West and South of the country (Fig. 3). It is present in all phytogeographic zones except in the North-Sahelian one. A specimen has been captured in a forest at the entrance to a cave where *Hipposideros abae*, *H. ruber*, *Nycteris macrotis* and *Rhinolophus landeri* live together. The other specimens have been captured in a pocket of forest on a rocky substratum rich in *Raphia* palm and next to the Nazinon River. All specimens that we captured were presenting a single orange-yellow phase.

*Hipposideros tephrus* is smaller than *H. ruber*. The averages of body measurements and cranial measurements of *H. tephrus* are lower than those of *H. ruber*. However, there is an overlap on all body measurements (except HB). Nevertheless, cranial measurements reveal that the maximum values of *H. tephrus* are smaller than the minimum values of *H. ruber* (Table 5). A specimen from waterfalls of Kou is member of clade A2 following the designation adopted by Vallo et al. (2009), which should be named *H. tephrus*.

### Hipposideros vittatus (Peters, 1852)

It is the largest of Hipposideridae among those



Figure 3. Distribution of Hipposideridae in Burkina Faso.

found in Burkina Faso (see Table 5). Present in branches of trees as well as in caves (Pye, 1972; Vaughan, 1977), it is located west of the Sudanian zone (Fig. 3). The specimens have been captured in woodland, next to a gallery forest, in a shrubby and arborous savanna and in an herbaceous steppe located along a river.

Body measurements show that males are not different from females. On the other hand, the maximum values of cranial measurements of females are lower than the cranial measurements of males (Table 4). All captured specimens were yellow.

Family MEGADERMATIDAE Genus *Lavia* Gray, 1838 *Lavia frons* (E. Geoffroy, 1810)

This species is found in savannas and semiwooded areas (Vaughan & Vaughan, 1986) but not widely distributed in Burkina Faso, where it has been recorded from a few areas in the southern part of the country (Fig. 4). In eastern Kenya, it regularly roosts in thorny Acacia trees (Vaughan & Vaughan, 1986; Vaughan, 1987); hence it is surprising that there are no records from northern Burkina Faso. Some specimens have been captured near water points.

Males are not really different from females. Body measurements and cranial measurements do not enable to separate them (Table 6).

# Family RHINOLOPHIDAE Genus *Rhinolophus* Lacépède, 1799 *Rhinolophus alcyone* Temminck, 1853

*Rhinolophus alcyone* was distributed in the extreme southwest of the South-Sudanian zone (Fig. 5). In Burkina Faso, this forest species probably depends on gallery forests that provide similar conditions to rainforests further south. All captured specimens were gray, resembling that of *R. fumigatus*.

Averages of body measurements (except 3Ph1, 5Ph2, Tib and HB) and cranial measurements of males from *R. alcyone* are smaller than those of males from *R. fumigatus*. Only the maximum value of the ear of males from *R. alcyone* species is less than the minimum value of the ear of males from

*R. fumigatus*. And the minimum value of the tibia of *R. alcyone* is higher than the maximum value of the tibia of *R. fumigatus*. All other values are not distinctly separated. As regards females, all values (except 5Ph2) of *R. alcyone* are smaller than the averages of *R. fumigatus*. Moreover, all values (except HB, Tail, 3Ph1, 5Ph2 and Tib) of *R. alcyone* are smaller than the minimum values of *R. fumigatus* (Table 7).

### Rhinolophus fumigatus Rüppell, 1842

In Burkina Faso, *Rhinolophus fumigatus* has been recorded in the Sudanian zone, with several localities in the north of the South-Sudanian zone and few localities in the western North-Sudanian zone (Fig. 5). *Rhinolophus fumigatus* is present in more open habitats than *R. alcyone* (Rosevear, 1965), which explains its wider distribution in Burkina Faso than *R. alcyone*. Like *R. landeri*, *R. fumigatus* does not live only in caves. According to Koopman et al. (1978), they were captured in huts. Some specimens were observed during the BIOTA collect in a large rock cleft in the Gobnangou range.

Five males called at  $54.2 \pm 0.4$  (53.4-54.4) kHz. Two collected specimens had a horseshoe width of 11.3 and 11.5 mm, respectively. Averages of body measurements do not help to distinguish males from females. On the other hand, the averages of cranial measurements of males are higher than those of females (Table 7).

#### Rhinolophus landeri Martin, 1838

*Rhinolophus landeri* occurs in almost all phytogeographic zones of Burkina Faso except in the North-Sahelian zone (Fig. 5). Day roosts are caves, house of worship, bridges, and wells (Aellen, 1952; Menzies, 1973; Koopman et al., 1978; Kock et al., 2002), and the dependency on cave-like structures might explain the concentration of records in the southwest of the country, with its numerous rocky formations. The ability to roost in environments other than caves might explain its presence in other parts of the country, and this species probably occurs throughout most of Burkina Faso. It would therefore not be surprising to find it almost everywhere in Burkina Faso, particularly in rock formations in the South-East. Most specimens have been

|     |          |       |      |      |      |     |                      |      |       | H         | ipposide | ros abae       |             |            |      |      |      |      |      |       |                                |                  |
|-----|----------|-------|------|------|------|-----|----------------------|------|-------|-----------|----------|----------------|-------------|------------|------|------|------|------|------|-------|--------------------------------|------------------|
| Sex |          | BM    | TL   | Т    | Е    | TR  | FA                   | 3Met | 3Ph1  | 3Ph2      | 3Ph3     | 4Met           | 4Ph1        | 4Ph2       | 5Met | 5Ph1 | 5Ph2 | Tib  | HF   | C-C   | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
|     | Х        | 14.7  | 63.0 | 32.4 | 20.8 |     | 59.7                 | 41.9 | 18.4  | 19.6      |          | 40.8           | 12.3        | 10.4       | 36.8 | 15.3 | 11.4 | 24.3 | 10.9 | 5.98  | 8.93                           | 8.76             |
|     | $\pm$ SD | 1.0   | 1.6  | 2.1  | 1.0  |     | 1.5                  | 1.1  | 0.7   | 1.1       |          | 1.3            | 0.5         | 0.6        | 1.0  | 0.5  | 0.6  | 0.7  | 0.4  | 0.15  | 0.15                           | 0.15             |
| 33  | Min      | 12.0  | 58.9 | 27.5 | 19.1 |     | 56.7                 | 39.5 | 16.9  | 17.4      |          | 37.7           | 11.0        | 9.2        | 34.9 | 14.2 | 10.7 | 22.8 | 9.6  | 5.77  | 8.66                           | 8.53             |
|     | Max      | 17.5  | 65.2 | 36.3 | 22.5 |     | 62.6                 | 43.9 | 19.5  | 21.9      |          | 44.4           | 13.3        | 11.8       | 39.8 | 16.5 | 12.7 | 25.6 | 11.6 | 6.44  | 9.16                           | 9.11             |
|     | n=       | 25    | 25   | 25   | 25   |     | 18                   | 25   | 25    | 25        |          | 25             | 25          | 25         | 25   | 25   | 25   | 25   | 25   | 24    | 25                             | 24               |
|     | X        | 18.0  | 61.8 | 31.7 | 20.4 |     | 60.1                 | 44.1 | 18.9  | 20.6      |          | 42.9           | 13.0        | 10.8       | 38.9 | 15.4 | 12.0 | 24.6 | 10.5 | 5.92  | 8.99                           | 8.76             |
|     | ± SD     | 4.3   | 3.6  | 1.3  | 0.9  |     | 2.3                  | 1.4  | 0.8   | 1.0       |          | 1.8            | 0.6         | 0.8        | 1.1  | 0.7  | 0.8  | 1.1  | 0.6  | 0.13  | 0.17                           | 0.15             |
| ŶŶ  | Min      | 13.0  | 57.4 | 30.2 | 19.1 |     | 56.4                 | 42.6 | 17.9  | 19.1      |          | 41.0           | 12.1        | 9.5        | 37.8 | 14.7 | 10.4 | 23.3 | 9.1  | 5.74  | 8.78                           | 8.53             |
| ΤT  | Max      | 26.3  | 69.0 | 34.0 | 21.7 |     | 63.0                 | 47.3 | 20.1  | 22.4      |          | 46.6           | 13.9        | 11.6       | 41.2 | 16.4 | 12.8 | 26.6 | 11.3 | 6.11  | 9.36                           | 9.03             |
|     | n=       | 7     | 7    | 7    | 7    |     | 7                    | 7    | 7     | 7         |          | 7              | 7           | 7          | 7    | 7    | 7    | 7    | 7    | 7     | 7                              | 7                |
|     | п        | ,     | ,    | ,    | ,    |     | /                    |      | /     | ,<br>Hir  | masidera | s cvclons      | ,           | ,          | /    | ,    | ,    | /    | ,    | ,     |                                | ,                |
| Sev |          | BM    | TL   | т    | F    | TR  | FΔ                   | 3Met | 3Ph1  | 3Ph2      | 3Ph3     | 4Met           | 4Ph1        | 4Ph2       | 5Met | 5Ph1 | 5Ph2 | Tib  | HF   | 6.6   | M3 M3                          | C M3             |
| 2   |          | 34.0  | 77.5 | 25.7 | 32.8 | 110 | 70.1                 | 55.5 | 20.1  | 27.4      | 51 115   | 57.4           | 14.2        | 14.2       | 55.5 | 16.5 | 15.0 | 30.4 | 17.5 | 8.01  | 11.27                          | 9.80             |
| 0   |          | 49.0  | 75.4 | 29.5 | 32.0 |     | 70.3                 | 59.7 | 21.2  | 27.4      |          | 59.2           | 15.8        | 15.0       | 57.6 | 18.2 | 15.0 | 35.9 | 18.3 | 7.80  | 11.27                          | 10.29            |
| +   |          | 44.0  | 76.0 | 29.5 | 30.0 |     | 70.6                 | 56.7 | 21.2  | 27.2      |          | 50.3           | 14.7        | 15.0       | 57.5 | 16.5 | 14.5 | 35.8 | 17.0 | 7.78  | 10.70                          | 10.00            |
|     |          | 44.0  | 70.9 | 29.5 | 50.9 |     | 70.0                 | 50.7 | 21.0  |           | nnosidar | os ionesi      | 14.7        | 13.2       | 57.5 | 10.5 | 14.5 | 55.0 | 17.9 | 7.70  | 10.70                          | 10.00            |
| Sex |          | BM    | TL   | т    | F    | TR  | FΔ                   | 3Met | 3Ph1  | 3Ph2      | 3Ph3     | 4Met           | 4Ph1        | 4Ph2       | 5Met | 5Ph1 | 5Ph2 | Tib  | HF   | 6.6   | M <sup>3</sup> M <sup>3</sup>  | C M <sup>3</sup> |
| Jen | x        | 7.2   | 48.9 | 23.2 | 23.4 | II  | 46.7                 | 34.0 | 14 7  | 16.9      | 51115    | 35.8           | 10.9        | 8 7        | 32.8 | 12.3 | 10.1 | 21.7 | 7.8  | 3.68  | 5.83                           | 5.93             |
|     | + SD     | 0.3   | 2.5  | 2 7  | 14   |     | 0.8                  | 0.6  | 0.5   | 0.8       |          | 0.7            | 0.4         | 0.5        | 0.9  | 0.4  | 0.3  | 0.9  | 0.3  | 0.12  | 0.16                           | 0.09             |
| 33  | Min      | 7.0   | 46.2 | 17.8 | 21.6 |     | 44.9                 | 33.1 | 14.2  | 15.5      |          | 34.5           | 9.9         | 8.0        | 31.6 | 11.8 | 9.6  | 20.3 | 73   | 3 48  | 5.63                           | 5.82             |
| 00  | May      | 8.0   | 54.5 | 26.4 | 25.2 |     | 47.3                 | 34.8 | 15.8  | 17.6      |          | 36.5           | 11.2        | 0.0        | 34.1 | 12.8 | 10.5 | 20.5 | 82   | 3.84  | 6.03                           | 6.07             |
|     | n=       | 7     | 7    | 20.4 | 7    |     | 7                    | 7    | 7     | 7         |          | 7              | 7           | 7          | 7    | 7    | 7    | 7    | 7    | 7     | 0.05                           | 7                |
| 0   | 11-      | 6.0   | 43.7 | 22.6 | 20.5 |     | 44.4                 | 32.2 | 14.5  | 15.8      |          | 33.9           | 10.0        | 82         | 31.6 | 11.9 | 9.5  | 20.2 | 7.2  | 3 27  | 5 50                           | 5.68             |
| +   |          | 0.0   | 45.7 | 22.0 | 20.5 |     | 44.4                 | 52.2 | 14.5  | 15.0<br>H | nnosida  | os rubar       | 10.0        | 0.2        | 51.0 | 11.7 | 7.5  | 20.2 | 1.2  | 5.21  | 5.50                           | 5.00             |
| Sev |          | BM    | TI   | т    | F    | TR  | FΔ                   | 3Met | 3Ph1  | 3Ph2      | 3Ph3     | 4Met           | 4Ph1        | 4Ph2       | 5Met | 5Ph1 | 5Ph2 | Tib  | HF   | 6.6   | M <sup>3</sup> M <sup>3</sup>  | C M <sup>3</sup> |
|     | x        | 0.0   | 52.1 | 30.0 | 15.7 | IK  | 49.1                 | 37.2 | 16.2  | 16.3      | 51 115   | 36.2           | 11.2        | 9.1        | 32.7 | 13.0 | 0.0  | 20.6 | 9.0  | 4 90  | 7 20                           | 7.03             |
| 20  | + SD     | 13    | 21   | 30.0 | 0.0  |     | 13                   | 10   | 0.7   | 10.5      |          | 23             | 0.5         | 0.6        | 17   | 0.5  | 0.5  | 0.8  | 0.6  | 0.25  | 0.23                           | 0.19             |
| 0+  | Min      | 7.0   | 48.0 | 23.0 | 13.4 |     | 1.5                  | 33.6 | 14.8  | 14.1      |          | 32.0           | 10.2        | 0.0<br>7 7 | 20.6 | 12.0 | 0.5  | 10.0 | 7.8  | 4 20  | 6.58                           | 6.66             |
|     | May      | 12.5  | 58.2 | 29.0 | 17.6 |     | 52.4                 | 41.4 | 177   | 19.1      |          | 41.0           | 12.1        | 10.2       | 29.0 | 14.9 | 11.0 | 22.7 | 10.9 | 5.26  | 7.80                           | 7.44             |
|     | n=       | 19.5  | 18   | 18   | 19   |     | 07                   | 41.4 | 19.19 | 10.4      |          | 41.9           | 12.1        | 10.2       | 18   | 19.0 | 19   | 00   | 0.0  | 74    | 20                             | 20<br>20         |
|     | n–       | 40    | 40   | 40   | 40   |     | 71                   | 40   | 40    |           | mosidar  | +0             | 40          | 40         | 40   | 40   | 40   | 90   | 00   | /4    | 07                             | 07               |
| Sev |          | BM    | TL   | т    | F    | TR  | FΔ                   | 3Met | 3Ph1  | 3Ph2      | 3Ph3     | 4Met           | 4Ph1        | 4Ph2       | 5Met | 5Ph1 | 5Ph2 | Tib  | HF   | 6.6   | M <sup>3</sup> M <sup>3</sup>  | C M <sup>3</sup> |
| 2   |          | 82.0  | 104. | 37.4 | 30.4 | IR  | 109.                 | 81.0 | 37.5  | 44 5      | 51 115   | 78.1           | 28.8        | 16.6       | 78.7 | 29.4 | 18.4 | 45.8 | 22.2 | 10.93 | 13.52                          | 13.36            |
| 2   |          | 120.0 | 109. | 32.2 | 29.7 |     | 102.                 | 77.2 | 34.8  | 39.8      |          | 75.5           | 28.8        | 16.2       | 73.2 | 28.8 | 15.8 | 43.0 | 20.9 | 11.16 | 13.68                          | 13.32            |
|     | x        | 77.0  | 99.9 | 33.1 | 27.6 |     | 96.5                 | 70.9 | 32.4  | 38.9      |          | 69.5           | 26.6        | 15.4       | 68.3 | 27.3 | 16.6 | 38.8 | 20.0 | 9.86  | 12.80                          | 12 47            |
|     | + SD     | 9.0   | 29   | 4.0  | 13   |     | 2.9                  | 23   | 1.0   | 21        |          | 2.2            | 11          | 0.8        | 24   | 14   | 0.9  | 11   | 12   | 0.10  | 0.30                           | 0.22             |
| 00  | Min      | 63.0  | 96.4 | 26.0 | 25.4 |     | 03.6                 | 67.7 | 30.6  | 36.0      |          | 66.0           | 25.2        | 14.3       | 65.5 | 25.4 | 15.1 | 37.3 | 18.5 | 0.73  | 12 30                          | 12.17            |
| + + | May      | 93.0  | 104. | 38.4 | 20.4 |     | 102.                 | 74.7 | 33.0  | 42.0      |          | 72.6           | 23.2        | 16.5       | 73.0 | 30.1 | 17.8 | 40.9 | 21.7 | 10.00 | 13.16                          | 12.17            |
|     | n=       | 7     | 7    | 7    | 7    |     | $\hat{\overline{7}}$ | 7    | 7     | 7         |          | 72.0           | 7           | 7          | 7    | 7    | 7    | 7    | 7    | 7     | 7                              | 7                |
|     | 11-      | /     | /    | /    | /    |     | /                    | /    | /     | ,<br>U:.  | nocidar  | ,<br>c tanhuus | 1           | /          | /    | /    | /    | /    | /    | /     | 1                              | /                |
| Sev |          | BM    | ті   | т    | F    | TΡ  | F۵                   | 3Met | 3Ph1  | 3Ph2      | 3Ph3     | 4Met           | 4Ph1        | 4Ph2       | 5Met | 5Ph1 | 5Ph2 | Tib  | HF   | 0.0   | M <sup>3</sup> M <sup>3</sup>  | C.M <sup>3</sup> |
| 564 | x        | 63    | 45.2 | 28.6 | 13.2 | IK  | 44.0                 | 33.3 | 14.6  | 15.8      | 51115    | 33.0           | 0.0         | 8.8        | 20.3 | 12.5 | 10.2 | 18.2 | 7.0  | 3.67  | 5.68                           | 5.57             |
|     | + SD     | 0.5   | 11   | 20.0 | 0.5  |     | 12                   | 1.0  | 0.5   | 0.5       |          | 1.0            | 0.3         | 0.0        | 12   | 0.4  | 0.4  | 0.7  | 0.4  | 0.10  | 0.14                           | 0.00             |
| 30  | Min      | 5.5   | 43.6 | 2.2  | 12.0 |     | 42.0                 | 32.0 | 12.0  | 15.2      |          | 31.0           | 0.5         | 0.4<br>8 A | 28.1 | 11.0 | 0.4  | 16.0 | 7 1  | 3 19  | 5 26                           | 5 21             |
| 0+  | May      | 7.0   | 45.0 | 21.2 | 14.9 |     | 47.0                 | 25.1 | 15.9  | 15.2      |          | 25.0           | 9.0<br>10.4 | 0.0        | 20.1 | 12.0 | 10.8 | 10.9 | 8.6  | 2.94  | 5.01                           | 5.70             |
|     | iviax    | 2.0   | 40.0 | 51.2 | 14.2 |     | 47.0                 | 55.1 | 15.5  | 10.0      |          | 55.0           | 10.4        | 9.2        | 51.7 | 15.0 | 10.0 | 19.4 | 0.0  | J.04  | 17                             | 10               |
|     | n=       | 2     | 0    | 0    | 0    |     | 21                   | 0    | 0     | 0         |          | 0              | 0           | 0          | 0    | 0    | 0    | 22   | /    | 10    | 17                             | 18               |

Table 5. Measurements of Hipposideridae from Burkina Faso.

|     |     |      |      |   |      |      |      |      |      |      | Lavia | frons |      |      |      |      |      |      |      |      |                                |                  |
|-----|-----|------|------|---|------|------|------|------|------|------|-------|-------|------|------|------|------|------|------|------|------|--------------------------------|------------------|
| Sex |     | BM   | TL   | Т | Е    | TR   | FA   | 3Met | 3Ph1 | 3Ph2 | 3Ph3  | 4Met  | 4Ph1 | 4Ph2 | 5Met | 5Ph1 | 5Ph2 | TB   | HF   | C-C  | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
| 8   |     | 23.5 | 66.7 |   | 40.1 | 25.1 | 61.6 | 45.7 | 25.5 | 39.4 |       | 48.9  | 16.1 | 14.1 | 51.8 | 16.8 | 16.5 | 34.4 | 16.5 | 5.85 | 8.86                           | 9.47             |
| 8   |     | 22.3 | 69.1 |   | 43.6 | 23.4 | 60.8 | 44.6 | 24.0 | 40.5 |       | 47.8  | 16.0 | 15.5 | 50.7 | 16.6 | 15.9 | 33.8 | 16.8 | 5.87 | 9.18                           | 8.67             |
|     | Х   | 28.5 | 70.2 |   | 42.8 | 26.5 | 61.3 | 45.7 | 25.4 | 42.1 |       | 49.8  | 15.9 | 14.9 | 52.1 | 17.2 | 16.7 | 34.5 | 16.7 | 6.25 | 9.09                           | 9.23             |
|     | Min | 26.3 | 66.0 |   | 41.8 | 25.1 | 60.0 | 45.1 | 25.1 | 41.3 |       | 49.5  | 14.4 | 14.6 | 51.4 | 16.7 | 16.6 | 33.7 | 15.5 | 6.22 | 8.74                           | 9.05             |
| φç  | Max | 31.0 | 74.2 |   | 44.3 | 28.0 | 62.3 | 46.3 | 25.8 | 42.7 |       | 50.4  | 17.4 | 15.2 | 53.1 | 17.9 | 16.8 | 35.1 | 17.2 | 6.28 | 9.44                           | 9.40             |
|     | n=  | 3    | 4    |   | 4    | 4    | 4    | 4    | 4    | 4    |       | 4     | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 2    | 2                              | 2                |

Table 6. Measurements of Megadermatidae from Burkina Faso.



Figure 4. Distribution of Megadermatidae in Burkina Faso. Figure 5. Distribution of Rhinolophidae in Burkina Faso.

|     |          |      |      |      |      |    |      |      |      | Rhi  | nolophu | s alcyon | 2    |      |      |      |      |      |      |      |                                |                  |
|-----|----------|------|------|------|------|----|------|------|------|------|---------|----------|------|------|------|------|------|------|------|------|--------------------------------|------------------|
| Sex |          | BM   | TL   | Т    | Е    | TR | FA   | 3Met | 3Ph1 | 3Ph2 | 3Ph3    | 4Met     | 4Ph1 | 4Ph2 | 5Met | 5Ph1 | 5Ph2 | TB   | HF   | C-C  | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
| 33  | x        | 13.1 | 56.7 | 26.3 | 19.8 |    | 50.4 | 36.6 | 17.4 | 26.6 | 2.7     | 41.6     | 8.8  | 16.4 | 40.1 | 11.9 | 14.9 | 23.6 | 12.1 | 6.31 | 8.42                           | 8.67             |
|     | Min      | 12.0 | 55.5 | 22.8 | 19.7 |    | 49.5 | 35.1 | 16.9 | 24.6 | 2.7     | 41.0     | 8.0  | 15.2 | 39.2 | 11.4 | 14.2 | 23.2 | 11.4 | 6.01 | 8.15                           | 8.28             |
|     | Max      | 14.0 | 57.6 | 30.6 | 19.9 |    | 51.1 | 38.0 | 18.1 | 28.2 | 2.8     | 42.5     | 9.3  | 17.3 | 42.1 | 12.3 | 15.6 | 24.4 | 13.0 | 6.50 | 8.66                           | 8.84             |
|     | n=       | 4    | 4    | 4    | 4    |    | 4    | 4    | 4    | 4    | 4       | 4        | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4                              | 4                |
| Ŷ   |          | 12.0 | 54.8 | 25.4 | 20.2 |    | 48.8 | 35.7 | 16.3 | 26.7 | 2.7     | 40.4     | 8.4  | 15.2 | 40.2 | 11.8 | 13.8 | 22.5 | 10.5 | 5.47 | 8.09                           | 8.12             |
|     |          |      |      |      |      |    |      |      |      | Rhin | olophus | fumigati | 45   |      |      |      |      |      |      |      |                                |                  |
| Sex |          | BM   | TL   | Т    | Е    | TR | FA   | 3Met | 3Ph1 | 3Ph2 | 3Ph3    | 4Met     | 4Ph1 | 4Ph2 | 5Met | 5Ph1 | 5Ph2 | TB   | HF   | C-C  | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
| 33  | х        | 16.1 | 64.2 | 27.0 | 24.4 |    | 53.4 | 39.4 | 17.0 | 29.4 | 3.1     | 41.9     | 10.3 | 17.8 | 42.5 | 13.1 | 14.2 | 21.6 | 11.6 | 6.79 | 8.97                           | 8.88             |
|     | $\pm$ SD | 1.6  | 5.4  | 2.4  | 1.8  |    | 1.5  | 1.0  | 0.7  | 1.4  | 0.3     | 1.0      | 0.7  | 0.9  | 0.9  | 0.7  | 1.2  | 1.3  | 1.0  | 0.29 | 0.33                           | 0.27             |
|     | Min      | 12.0 | 57.0 | 23.3 | 21.7 |    | 50.4 | 37.5 | 16.2 | 26.3 | 2.5     | 39.9     | 9.3  | 16.3 | 40.7 | 11.8 | 12.8 | 18.6 | 10.1 | 6.26 | 8.35                           | 8.29             |
|     | Max      | 17.5 | 74.6 | 31.0 | 27.0 |    | 55.4 | 40.5 | 18.3 | 30.9 | 3.5     | 43.3     | 11.5 | 19.2 | 43.7 | 14.1 | 16.2 | 22.9 | 13.6 | 7.24 | 9.39                           | 9.07             |
|     | n=       | 9    | 9    | 9    | 9    |    | 9    | 8    | 8    | 8    | 5       | 8        | 8    | 8    | 8    | 8    | 8    | 8    | 9    | 6    | 6                              | 6                |
| 우우  | х        | 15.2 | 60.6 | 28.0 | 24.3 |    | 53.0 | 39.5 | 16.4 | 28.5 | 3.4     | 42.3     | 10.0 | 17.8 | 42.7 | 12.7 | 13.7 | 22.3 | 11.1 | 6.64 | 8.70                           | 8.56             |
|     | Min      | 10.0 | 57.0 | 23.5 | 22.9 |    | 50.3 | 38.5 | 15.7 | 27.8 | 3.2     | 41.8     | 9.9  | 17.0 | 42.4 | 12.3 | 13.5 | 22.0 | 10.7 | 6.43 | 8.25                           | 8.30             |
|     | Max      | 18.0 | 67.0 | 34.0 | 25.0 |    | 55.7 | 40.4 | 17.1 | 29.2 | 3.6     | 42.7     | 10.1 | 18.5 | 42.9 | 13.0 | 13.9 | 22.5 | 12.0 | 6.80 | 9.03                           | 8.66             |
|     | n=       | 4    | 4    | 4    | 4    |    | 4    | 2    | 2    | 2    | 2       | 2        | 2    | 2    | 2    | 2    | 2    | 2    | 4    | 3    | 3                              | 5                |
|     |          |      |      |      |      |    |      |      |      | Rhi  | nolophu | s lander | i    |      |      |      |      |      |      |      |                                |                  |
| Sex |          | BM   | TL   | Т    | Е    | TR | FA   | 3Met | 3Ph1 | 3Ph2 | 3Ph3    | 4Met     | 4Ph1 | 4Ph2 | 5Met | 5Ph1 | 5Ph2 | TB   | HF   | C-C  | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
| 33  | х        | 5.9  | 45.3 | 23.4 | 17.1 |    | 41.4 | 28.4 | 12.8 | 19.2 |         | 31.7     | 6.4  | 11.9 | 30.6 | 9.0  | 11.6 | 17.9 | 8.4  | 4.72 | 6.72                           | 6.54             |
|     | $\pm$ SD | 0.6  | 3.8  | 1.8  | 0.8  |    | 1.5  | 1.3  | 0.4  | 1.9  |         | 1.9      | 0.4  | 1.2  | 2.0  | 0.4  | 0.7  | 0.6  | 0.1  | 0.19 | 0.12                           | 0.14             |
|     | Min      | 5.0  | 42.9 | 20.3 | 16.2 |    | 39.1 | 26.6 | 12.0 | 16.3 |         | 29.6     | 5.9  | 10.0 | 27.9 | 8.3  | 10.7 | 17.0 | 8.1  | 4.50 | 6.54                           | 6.44             |
|     | Max      | 6.9  | 53.7 | 25.9 | 18.5 |    | 44.1 | 30.4 | 13.2 | 21.9 |         | 34.8     | 6.7  | 13.2 | 33.4 | 9.4  | 12.7 | 18.6 | 8.6  | 5.04 | 6.85                           | 6.82             |
|     | n=       | 6    | 6    | 6    | 6    |    | 6    | 5    | 5    | 5    |         | 5        | 5    | 5    | 5    | 5    | 5    | 6    | 6    | 5    | 5                              | 5                |
| 22  | х        | 7.4  | 44.9 | 24.3 | 16.5 |    | 41.5 | 28.4 | 12.9 | 19.9 |         | 31.3     | 6.5  | 12.6 | 30.4 | 9.0  | 12.1 | 17.4 | 8.3  | 4.37 | 6.58                           | 6.45             |
|     | $\pm$ SD | 1.2  | 2.6  | 2.0  | 0.9  |    | 1.0  | 1.0  | 0.5  | 1.5  |         | 1.2      | 0.4  | 0.7  | 1.3  | 0.6  | 0.6  | 0.6  | 0.6  | 0.28 | 0.14                           | 0.11             |
|     | Min      | 5.5  | 41.2 | 21.1 | 14.9 |    | 40.0 | 26.7 | 11.9 | 16.9 |         | 29.4     | 5.8  | 10.5 | 28.4 | 7.3  | 11.0 | 16.4 | 7.3  | 3.93 | 6.23                           | 6.19             |
|     | Max      | 9.5  | 54.1 | 30.2 | 18.0 |    | 43.4 | 31.1 | 14.0 | 22.8 |         | 34.0     | 7.4  | 14.1 | 33.0 | 10.1 | 13.4 | 18.4 | 10.3 | 4.96 | 6.86                           | 6.67             |
|     | n=       | 22   | 22   | 22   | 22   |    | 22   | 22   | 22   | 22   |         | 22       | 22   | 22   | 22   | 22   | 22   | 22   | 22   | 21   | 21                             | 21               |

Table 7. Measurements of Rhinolophidae from Burkina Faso.

captured from a cave where we placed nets at the entrance. Several other species were also present, including *Hipposideros abae*, *H. ruber*, *H. tephrus* and *Nycteris macrotis*. All specimens that we captured were orange-yellow; which makes it easier to distinguish it from *R. alcyone* and *R. fumigatus*. One male was calling at 108.5 kHz. It had a horse-shoe width of 7.0 mm and well-developed reddishbrown axillary tufts. A female called at 105.6 kHz with a horseshoe 7.3 mm wide.

# Family RHINOPOMATIDAE Genus *Rhinopoma* E. Geoffroy, 1818 *Rhinopoma cytops* Thomas, 1903

Hulva et al. (2007) restrict *R. hardwickii* to Asia and *R. cystops* to Africa and Western Asia. *Rhinopoma cytops*, found in the Northern Sahara (Horáček et al., 2000) is a species from desert to semi-desert areas (Hill, 1977; Van Cakenberghe & De Vree, 1994). In Burkina Faso, it has been found in the northern Sahelian as well as in the South-Sudanian zone, suggesting a rather loose association with climatic areas in the country (Fig. 6). In the South-Sudanian area, its presence seems to be linked to the presence of rocky formations and rugged topography.

Averages of body measurements (except HB, 3Ph1, 3Ph2, 4Ph2 and 5Ph2) of males are smaller than those of females. On the other hand, averages of cranial measurements of males are higher than those of females (Table 8). The tail being actually longer than the forearm, one can distinguish it from *R. microphyllum*.

### Rhinopoma microphyllum (Brünnich, 1782)

*Rhinopoma microphyllum* seem to occur in similar habitats as *R. cystops* (Qumsiyeh, 1985). In Burkina Faso, *R. microphyllum* has been recorded from the North-Sahelian zone (Fig. 6). Although this

|     |     |      |      |      |      |     |      |      |      | R    | hinopon | ia cystop | os   |      |      |      |      |      |      |      |                                |                  |
|-----|-----|------|------|------|------|-----|------|------|------|------|---------|-----------|------|------|------|------|------|------|------|------|--------------------------------|------------------|
| Sex |     | BM   | TL   | Т    | Е    | TR  | FA   | 3Met | 3Ph1 | 3Ph2 | 3Ph3    | 4Met      | 4Ph1 | 4Ph2 | 5Met | 5Ph1 | 5Ph2 | TB   | HF   | C-C  | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
|     | х   | 9.8  | 62.0 | 69.0 | 19.2 | 7.5 | 57.1 | 39.0 | 9.5  | 14.8 |         | 33.7      | 12.5 | 10.1 | 39.1 | 10.1 | 8.8  | 25.5 | 12.6 | 4.23 | 7.78                           | 6.01             |
|     | Min | 8.5  | 54.0 | 64.5 | 18.3 | 6.8 | 54.9 | 37.6 | 8.5  | 12.1 |         | 31.8      | 11.8 | 9.1  | 37.0 | 9.1  | 7.5  | 23.0 | 11.2 | 4.14 | 7.66                           | 5.97             |
| ර්ර | Max | 10.5 | 68.1 | 71.8 | 20.7 | 8.3 | 58.4 | 40.9 | 10.2 | 16.0 |         | 35.6      | 12.8 | 11.2 | 40.6 | 10.5 | 9.6  | 27.3 | 13.5 | 4.31 | 7.91                           | 6.07             |
|     | n=  | 4    | 4    | 4    | 4    | 4   | 4    | 4    | 4    | 4    |         | 4         | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4                              | 4                |
|     | х   | 11.5 | 60.5 | 71.0 | 19.6 | 7.2 | 59.4 | 41.5 | 8.7  | 14.3 |         | 34.6      | 12.6 | 9.7  | 40.7 | 10.8 | 8.4  | 27.0 | 13.0 | 4.21 | 7.66                           | 5.86             |
|     | Min | 9.5  | 58.1 | 68.8 | 18.1 | 6.8 | 57.2 | 38.6 | 7.7  | 13.7 |         | 32.5      | 11.5 | 9.0  | 38.5 | 9.5  | 8.0  | 24.7 | 12.6 | 4.09 | 7.49                           | 5.79             |
| Ϋ́  | Max | 14.0 | 62.1 | 74.5 | 20.5 | 7.8 | 60.6 | 43.5 | 9.3  | 15.1 |         | 36.1      | 13.2 | 10.5 | 42.0 | 12.1 | 8.9  | 28.3 | 13.2 | 4.28 | 7.79                           | 5.96             |
|     | n=  | 3    | 3    | 3    | 3    | 3   | 3    | 3    | 3    | 3    |         | 3         | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3                              | 3                |

Table 8. Measurements of Rhinopomatidae from Burkina Faso.



Figure 6. Distribution of Rhinopomatidae in Burkina Faso.

species has often been encountered in the same day roosts as *R. cystops* (though usually in smaller numbers) (Schlitter & Qumsiyeh, 1996), no specimen was recorded in the Sudanian zone of Burkina Faso.

# Family EMBALLONURIDAE Genus *Coleura* Peters, 1867 *Coleura afra* (Peters, 1852)

Rarely seen in West Africa, *Coleura afra* is located in the southwest in the South-Sudanian zone (Fig. 7). This cave-dwelling species has been captured only in this part of the country. Thousands of individuals have indeed been observed in this cave located on a hill at Néguéni. It is the smallest of Emballonuridae present in Burkina Faso (Table 9).

As observed by Goodman et al. (2008), males differ from females. Indeed, averages of body measurements and cranial measurements of the females are larger than those of males. In addition, maximum cranial measurements (M3-M3 and C-M3) of males are smaller than the minimum cranial measurements of females (Table 9).

# Genus *Taphozous* E. Geoffroy, 1818 *Taphozous nudiventris* Cretzschmar, 1830

Also known in the North of Sahara (Horáček et al., 2000), Taphozous nudiventris is particularly located in the North-Sahelian zone (Fig. 7). However, this species widely distributed in the dry areas of African savannas (Koopman, 1975) has just been located in the extreme southwest in the South-Sudanian zone. Its presence could be explained by the nature of the area in which these specimens have been captured. Indeed, the peaks of Sindou represent specific formations with very little vegetation and water with a lot of cracks that can lodge this species. As indicated by Benda et al. (2006), this species is often captured in its lodgings, in narrow shelters and in cracks. Actually in the peaks of Sindou, T. nudiventris has been captured at the top of the peaks, in cracks of rocks serving as shelters.

Body measurements (except 4Ph2 and 5Ph2) and all cranial measurements show that *T. nudi-ventris* is larger than *T. perforatus* (Table 9).

### Taphozous perforatus E. Geoffroy, 1818

Found in the northern Sahara (Horáček et al.,

2000), *Taphozous perforatus* is widely distributed in the Sahelian zone (Fig. 7). Also present in the W park bordering Niger (Poché, 1975), it was not surprising to encounter it in this part of Burkina Faso. Indeed, *T. perforatus* has just been located in the extreme South-East in the South-Sudanian zone.

But unlike the specimens captured by Poché (1975) in the hollow of a baobab, specimens captured in Burkina Faso during the BIOTA collect come from a cave. These have been captured on the Gobnangou range in the presence of a colony of



Figure 7. Distribution of Emballonuridae in Burkina Faso.

|            |     |      |       |      |      |     |      |      |      |      | Coleur   | a afra    |      |      |      |      |      |      |      |      |                                |                  |
|------------|-----|------|-------|------|------|-----|------|------|------|------|----------|-----------|------|------|------|------|------|------|------|------|--------------------------------|------------------|
| Sex        |     | BM   | TL    | Т    | Е    | TR  | FA   | 3Met | 3Ph1 | 3Ph2 | 3Ph3     | 4Met      | 4Ph1 | 4Ph2 | 5Met | 5Ph1 | 5Ph2 | TB   | HF   | C-C  | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
|            | Х   | 9.8  | 64.0  | 17.8 | 15.3 | 6.0 | 51.1 | 44.9 | 16.3 | 17.2 |          | 36.8      | 12.6 | 6.5  | 32.6 | 13.2 | 5.8  | 18.2 | 10.2 | 4.13 | 7.83                           | 7.02             |
|            | Min | 9.5  | 63.2  | 16.3 | 15.2 | 5.5 | 49.9 | 43.1 | 15.1 | 16.7 |          | 35.3      | 12.2 | 5.9  | 32.3 | 12.8 | 5.4  | 18.1 | 10.1 | 4.10 | 7.77                           | 6.96             |
| රීරී       | Max | 10.5 | 64.4  | 20.3 | 15.5 | 6.8 | 52.1 | 45.9 | 17.2 | 18.1 |          | 37.8      | 12.9 | 7.4  | 33.0 | 13.9 | 6.1  | 18.4 | 10.3 | 4.17 | 7.88                           | 7.12             |
|            | n=  | 3    | 3     | 3    | 3    | 3   | 3    | 3    | 3    | 3    |          | 3         | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3                              | 3                |
|            | х   | 11.2 | 66.4  | 17.9 | 15.8 | 6.3 | 52.7 | 48.2 | 17.7 | 17.4 |          | 38.8      | 13.2 | 7.1  | 33.8 | 14.0 | 5.9  | 19.0 | 10.6 | 4.25 | 8.17                           | 7.33             |
|            | Min | 10.5 | 65.8  | 16.9 | 15.5 | 6.2 | 51.1 | 46.4 | 17.6 | 16.4 |          | 37.3      | 12.9 | 6.7  | 33.0 | 13.9 | 5.4  | 18.2 | 10.2 | 4.14 | 8.16                           | 7.24             |
| ₽ <i>₽</i> | Max | 11.5 | 67.3  | 20.0 | 16.3 | 6.5 | 54.0 | 49.9 | 17.8 | 18.3 |          | 39.7      | 13.4 | 7.4  | 34.8 | 14.1 | 6.6  | 20.2 | 10.8 | 4.32 | 8.18                           | 7.39             |
|            | n=  | 3    | 3     | 3    | 3    | 3   | 3    | 3    | 3    | 3    |          | 3         | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3                              | 3                |
|            |     | -    | -     | -    | -    | -   | -    | -    | -    | Tan  | hozous i | nudiventr | is   | _    | -    | -    | -    | -    | -    | -    | -                              | -                |
| Sex        |     | BM   | TL    | Т    | E    | TR  | FA   | 3Met | 3Ph1 | 3Ph2 | 3Ph3     | 4Met      | 4Ph1 | 4Ph2 | 5Met | 5Ph1 | 5Ph2 | TB   | HF   | C-C  | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
| 3          |     | 60.0 | 105.3 | 38.9 | 20.8 | 6.1 | 80.5 | 74.6 | 31.7 | 30.5 | 01110    | 60.8      | 16.8 | 9.6  | 52.3 | 16.6 | 9.8  | 32.3 | 16.2 | 6.22 | 11.22                          | 11.51            |
| 2          |     | 61.5 | 108.2 | 37.2 | 21.0 | 6.7 | 73.4 | 67.7 | 28.5 | 30.2 |          | 55.4      | 16.6 | 8.9  | 47.2 | 16.0 | 9.2  | 31.2 | 17.9 | 6.63 | 11.07                          | 11.08            |
|            |     | 53.0 | 102.0 | 40.3 | 10.0 | 6.2 | 75.0 | 70.6 | 20.0 | 31.8 |          | 56.1      | 16.2 | 6.8  | 46.0 | 16.3 | 0.2  | 32.3 | 14.7 | 5.60 | 10.55                          | 11.34            |
| Ŧ          |     | 55.0 | 102.9 | 40.5 | 19.9 | 0.2 | 15.9 | 70.0 | 29.9 | J1.0 |          |           | 10.2 | 0.8  | 40.9 | 10.5 | 9.2  | 52.5 | 14.7 | 5.09 | 10.55                          | 11.54            |
|            |     |      |       |      |      |     |      |      |      | 1 0  | onozous  | perjorati | is   |      |      |      |      |      |      |      |                                |                  |
| Sex        |     | BM   | TL    | Т    | E    | TR  | FA   | 3Met | 3Ph1 | 3Ph2 | 3Ph3     | 4Met      | 4Ph1 | 4Ph2 | 5Met | 5Ph1 | 5Ph2 | TB   | HF   | C-C  | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
| ð          |     | 20.3 | 70.1  | 26.7 | 18.8 | 5.0 | 63.7 | 56.9 | 20.5 | 21.5 |          | 46.6      | 12.8 | 9.6  | 38.0 | 13.9 | 9.2  | 25.9 | 12.2 | 3.89 | 8.17                           | 8.42             |
| 3          |     | 18.0 | 73.5  | 25.5 | 19.2 | 6.1 | 62.5 | 56.4 | 19.9 | 21.6 |          | 46.0      | 13.1 | 9.0  | 37.2 | 13.5 | 8.5  | 24.5 | 13.0 | 3.76 | 8.48                           | 8.42             |
| ♀ (YA      | D)  | 16.3 | 67.0  | 27.7 | 16.8 | 5.0 | 61.4 | 55.1 | 18.5 | 19.8 |          | 44.5      | 11.6 | 8.3  | 36.0 | 13.5 | 8.2  | 23.9 | 12.1 | 3.71 | 8.15                           | 8.38             |
| Ŷ          |     | 19.5 | 72.1  | 25.5 | 18.0 | 5.5 | 63.4 | 57.1 | 20.0 | 21.5 |          | 46.3      | 12.5 | 9.1  | 37.2 | 13.9 | 9.6  | 24.3 | 12.8 | 3.76 | 8.29                           | 8.34             |

Table 9. Measurements of Emballonuridae from Burkina Faso.

about a hundred specimens. Others have been captured just at a cave entrance in an old attic in the presence of some *Rhinopoma cystops*. Like *R. cystops*, the presence of *T. perforatus* in this part of Burkina Faso seems to be linked to the presence of caves. It would therefore not be surprising to find specimens in the caves of the Southwest.

#### Family NYCTERIDAE

As pointed by Van Cankenberghe & De Vree (1998), *Nycteris thebaica* and *N. gambiensis* are species difficult to distinguish. Indeed, the measurements do not allow us to separate the few specimens collected during 2002 to 2009. They have been captured in a shrubby savanna next to a mountain assembly line, in a gallery forest along a river, in a gallery forest close to a depression, in a house and in the palaces of Senoufo kings.

# Genus *Nycteris* Cuvier et E. Geoffroy, 1795 *Nycteris gambiensis* (K. Andersen, 1912)

*Nycteris gambiensis* is mainly found in savannas of West Africa (Van Cakenberghe & De Vree, 1998). In Burkina Faso, it is particularly located in the western Sudanian zone with a few areas in the east (Fig. 8).

#### Nycteris grandis Peters, 1865

*Nycteris grandis* is located in the extreme Southwest in the South-Sudanian zone (Fig. 8). In Burkina Faso, it is easily distinguished from other Nycteridae by its large size (Table 10). Unlike Adam & Hubert (1976), who stated that it cannot be found outside the Guinean zone; or Van Cakenberghe & De Vree (1993) who said that *N. grandis* is restricted to rainforests, its presence in the protected forest of Lera in a gallery forest, confirms the statement of Rosevear (1965) according to which *N. grandis* can also be present outside the rainforest, in dense and moist gallery forest. Also, in Southern and Central Africa, this species is well known to occur outside of the rainforest zone (Monadjem et al., 2010).

#### Nycteris hispida (Schreber, 1774)

Present in the woody Guinean and Sudanian areas, *Nycteris hispida* is widely distributed in the West of the Sudanian zone with a few specimens in the East (Fig. 8). Although Rosevear (1965) thinks that it could spread further into the Sahelian areas, no specimen was captured in this part of Burkina Faso. All specimens captured in BIOTA project were brown. Some females captured during the month of September were carrying their young.

### Nycteris macrotis Dobson, 1876

Known in the forests and savannas of West Africa (Adam & Hubert, 1976; Van Cakenberghe & De Vree, 1985), *Nycteris macrotis* is located in all phytogeographic zones in Burkina Faso (Fig. 8). The diversity of its habitats composed of hollow logs, hollowed termitarium, wells and even simple holes in the ground (Adam & Hubert, 1976), enables this species to be found in all parts of Burkina Faso. However, it is more present in the South-Sudanian zone with a reduction of its presence in the North. Five specimens were captured in the protected forest of Niangoloko at the entrance to a cave with other species such as *Hipposideros abae*, *H. tephrus*, *H. ruber* and *Rhinolophus landeri*. All specimens collected during our study had two colors. Some were brown and other orange-yellow.



Figure 8. Distribution of Nycteridae in Burkina Faso.

|          |          |      |      |      |      |     |      |      |      | Ν          | ycteris g       | randis   |          |      |      |      |      |      |      |      |                                |                  |
|----------|----------|------|------|------|------|-----|------|------|------|------------|-----------------|----------|----------|------|------|------|------|------|------|------|--------------------------------|------------------|
| Sex      |          | BM   | TL   | Т    | Е    | TR  | FA   | 3Met | 3Ph1 | 3Ph2       | 3Ph3            | 4Met     | 4Ph1     | 4Ph2 | 5Met | 5Ph1 | 5Ph2 | TB   | HF   | C-C  | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
| 3        |          | 22.0 | 69.1 | 66.9 | 30.1 | 6.4 | 55.5 | 44.0 | 28.1 | 29.2       | 5.2             | 47.7     | 16.4     | 13.0 | 50.7 | 15.9 | 14.8 | 29.0 | 12.5 | 6.93 | 10.16                          | 9.32             |
| Ŷ        |          | 24.0 | 69.8 | 63.5 | 30.4 | 6.3 | 57.4 | 44.3 | 28.8 | 29.9       | 5.5             | 49.0     | 16.1     | 13.9 | 52.0 | 16.4 | 14.5 | 30.5 | 13.4 | 6.65 | 10.33                          | 9.06             |
|          |          |      |      |      |      |     |      |      |      | Λ          | ycteris I       | nispida  |          |      |      |      |      |      |      |      |                                |                  |
| Sex      |          | BM   | TL   | Т    | Е    | TR  | FA   | 3Met | 3Ph1 | 3Ph2       | 3Ph3            | 4Met     | 4Ph1     | 4Ph2 | 5Met | 5Ph1 | 5Ph2 | TB   | HF   | C-C  | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
|          | Х        | 6.3  | 45.1 | 45.5 | 21.0 | 4.8 | 38.9 | 31.9 | 21.9 | 21.1       | 3.1             | 33.9     | 12.2     | 7.7  | 34.0 | 12.1 | 9.4  | 19.4 | 8.5  | 4.24 | 6.49                           | 5.83             |
|          | $\pm$ SD | 0.4  | 0.9  | 0.9  | 0.8  | 0.3 | 1.0  | 0.6  | 0.7  | 0.7        | 0.7             | 0.5      | 0.5      | 0.7  | 0.7  | 0.3  | 0.2  | 0.8  | 0.7  | 0.20 | 0.13                           | 0.15             |
| 88       | Min      | 5.8  | 43.5 | 43.9 | 19.7 | 4.3 | 37.6 | 30.8 | 20.9 | 20.1       | 1.7             | 32.8     | 11.3     | 6.4  | 33.2 | 11.6 | 9.1  | 18.2 | 7.4  | 4.03 | 6.31                           | 5.54             |
|          | Max      | 7.0  | 46.1 | 46.7 | 22.3 | 5.1 | 40.9 | 32.5 | 23.0 | 22.1       | 4.1             | 34.5     | 12.9     | 8.5  | 34.9 | 12.7 | 9.7  | 20.8 | 9.5  | 4.55 | 6.76                           | 5.96             |
|          | n=       | 7    | 7    | 7    | 7    | 7   | 7    | 7    | 7    | 7          | 7               | 7        | 7        | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7                              | 7                |
| Ŷ        |          | 6.5  | 45.5 | 52.1 | 23.4 | 5.1 | 39.2 | 33.0 | 22.7 | 22.8       | 3.2             | 36.0     | 13.4     | 9.3  | 35.1 | 13.5 | 9.9  | 18.8 | 9.0  | 4.53 | 6.81                           | 5.85             |
|          |          |      |      |      |      |     |      |      |      | N          | vcteris m       | acrotis  |          |      |      |      |      |      |      |      |                                |                  |
| Sex      |          | BM   | TL   | Т    | Е    | TR  | FA   | 3Met | 3Ph1 | 3Ph2       | 3Ph3            | 4Met     | 4Ph1     | 4Ph2 | 5Met | 5Ph1 | 5Ph2 | TB   | HF   | C-C  | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
|          | Х        | 12.5 | 55.6 | 55.0 | 30.7 | 8.0 | 47.9 | 37.7 | 24.8 | 24.3       | 4.7             | 41.2     | 13.8     | 11.7 | 43.3 | 13.4 | 12.7 | 23.6 | 11.4 | 5.77 | 8.29                           | 7.46             |
|          | $\pm$ SD | 1.2  | 1.2  | 2.7  | 1.7  | 0.3 | 2.2  | 1.4  | 1.2  | 1.0        | 0.8             | 1.5      | 0.8      | 0.9  | 2.7  | 0.7  | 1.1  | 0.9  | 0.9  | 0.18 | 0.26                           | 0.24             |
| 33       | Min      | 11.0 | 54.0 | 50.3 | 28.6 | 7.5 | 44.1 | 36.1 | 22.8 | 22.5       | 4.0             | 39.5     | 12.6     | 9.9  | 39.1 | 12.0 | 10.4 | 21.9 | 9.8  | 5.45 | 7.87                           | 7.15             |
|          | Max      | 14.5 | 57.4 | 58.8 | 33.4 | 8.6 | 51.4 | 40.5 | 26.3 | 26.0       | 6.0             | 44.6     | 15.2     | 13.0 | 48.3 | 14.4 | 14.2 | 24.6 | 12.6 | 6.00 | 8.72                           | 7.81             |
|          | n=       | 8    | 8    | 8    | 8    | 8   | 8    | 8    | 8    | 8          | 7               | 8        | 8        | 8    | 8    | 8    | 8    | 8    | 8    | 8    | 8                              | 8                |
|          | Х        | 14.5 | 58.6 | 57.3 | 31.9 | 7.9 | 48.6 | 38.9 | 26.1 | 25.4       | 4.5             | 43.2     | 14.5     | 11.7 | 44.5 | 14.0 | 12.7 | 24.4 | 11.5 | 5.68 | 8.43                           | 7.51             |
| 00       | $\pm$ SD | 1.9  | 2.7  | 3.7  | 1.8  | 0.5 | 1.6  | 1.2  | 0.6  | 1.6        | 0.9             | 1.0      | 0.6      | 0.7  | 1.3  | 0.5  | 0.8  | 0.7  | 0.8  | 0.19 | 0.25                           | 0.16             |
| + +      | Min      | 12.0 | 55.6 | 51.5 | 29.0 | 6.9 | 46.3 | 36.6 | 24.6 | 23.1       | 2.5             | 41.6     | 13.5     | 10.6 | 42.2 | 13.0 | 11.2 | 23.2 | 10.3 | 5.27 | 7.94                           | 7.26             |
|          | Max      | 18.0 | 64.7 | 63.9 | 35.2 | 8.6 | 51.4 | 41.2 | 27.3 | 28.5       | 5.8             | 44.5     | 15.5     | 12.5 | 46.7 | 14.8 | 14.0 | 25.3 | 12.8 | 6.12 | 8.96                           | 7.85             |
|          | n=       | 13   | 13   | 13   | 13   | 13  | 13   | 13   | 13   | 13         | 13              | 13       | 13       | 13   | 13   | 13   | 13   | 13   | 13   | 13   | 12                             | 13               |
|          |          |      |      |      |      |     |      |      | Nyc  | eteris the | <i>baica</i> ar | nd N. ga | mbiensis | ĩ    |      |      |      |      |      |      |                                |                  |
| Sex      |          | BM   | TL   | Т    | Е    | TR  | FA   | 3Met | 3Ph1 | 3Ph2       | 3Ph3            | 4Met     | 4Ph1     | 4Ph2 | 5Met | 5Ph1 | 5Ph2 | TB   | HF   | C-C  | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
|          | х        | 7.0  | 47.1 | 50.0 | 26.8 | 7.5 | 41.1 | 32.6 | 22.5 | 21.2       | 3.8             | 35.2     | 12.6     | 9.3  | 35.5 | 12.5 | 10.4 | 22.2 | 9.2  | 4.18 | 6.58                           | 6.22             |
|          | $\pm$ SD | 0.8  | 0.8  | 3.0  | 1.1  | 0.3 | 1.6  | 1.2  | 0.7  | 1.1        | 0.4             | 1.2      | 0.9      | 0.5  | 1.3  | 0.8  | 0.4  | 0.8  | 0.5  | 0.10 | 0.20                           | 0.14             |
| 88       | Min      | 6.5  | 46.1 | 45.8 | 25.1 | 7.0 | 38.9 | 30.3 | 21.2 | 19.4       | 3.3             | 32.9     | 11.6     | 8.6  | 33.4 | 11.4 | 9.9  | 21.0 | 8.4  | 4.06 | 6.35                           | 6.06             |
|          | Max      | 8.5  | 48.4 | 53.4 | 28.1 | 7.7 | 43.5 | 33.5 | 23.3 | 22.8       | 4.4             | 36.1     | 13.8     | 9.9  | 36.9 | 13.7 | 11.2 | 23.4 | 9.8  | 4.34 | 6.92                           | 6.45             |
|          | n=       | 5    | 5    | 5    | 5    | 5   | 5    | 5    | 5    | 5          | 5               | 5        | 5        | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5                              | 5                |
| Ŷ        |          | 10.0 | 50.2 | 52.6 | 30.8 | 7.7 | 43.8 | 36.5 | 25.1 | 26.2       |                 | 38.0     | 13.4     | 11.1 | 39.3 | 13.9 | 12.4 | 22.7 | 9.9  | 4.74 | 7.22                           | 6.71             |
| <u> </u> |          | 8.0  | 48.3 | 52.5 | 30.1 | 7.1 | 43.0 | 32.2 | 22.4 |            |                 | 35.6     | 12.9     | 9.1  | 36.6 | 12.6 | 11.1 | 22.6 | 9.2  | 4.41 | 6.87                           | 6.44             |

Table 10. Measurements of Nycteridae from Burkina Faso.

### Nycteris thebaica E. Geoffroy, 1818

Found in all phytogeographic zones, even the desert and the Arabian Peninsula except rainforests and central Sahara (Van Cakenberghe & De Vree, 1993), *Nycteris thebaica* is present in all phytogeographic areas in Burkina Faso (Fig. 8). Indeed, this anthropic species lives in habitats such as millet granaries as well as in trees (Adam & Hubert, 1976). However, it seems less present in the South-Sudanian zone than the rest of the country.

Family MOLOSSIDAE Genus *Chaerephon* Dobson, 1874 *Chaerephon major* (Trouessart, 1897)

Even if they captured it in only two areas,

Koopman et al. (1978) had already suggested that Chaerephon major was probably widespread in Burkina Faso (Fig. 9). Indeed, as a typical African savanna species (Koopman, 1975; McLellan, 1986), C. major is present in all phytogeographic areas of Burkina Faso except in the South-Sahelian zone. Lodged in crevices, cracks or in aggregates of rocks in rivers, hollow trees and holes in houses (Rosevear, 1965), it would therefore not be surprising to find it in the South-Sahelian zone. All three new specimens have been captured in the protected forest of Niouma in a shrubby savanna and in an open forest. Chaerephon major is smaller than C. nigeriae. The maximum values of body measurements (Bm, HB, FA, 3Met, 4Met, 5met, 5Ph1 and 5Ph2) and cranial measurements of C. major are lower than the body measurements and cranial measurements of C. nigeriae (Table 11).

#### Chaerephon nigeriae Thomas, 1913

*Chaerephon nigeriae* is located in Southcentral and extreme Southwestern part in Sudanian zone (Fig. 9). The five specimens have been captured in a gallery forest along a stream at Galgouli and in an open forest and shrubby savanna in the protected forest of Niouma. It is the largest *Chaerephon* found in Burkina Faso.

The measurement of the forearm helps to separate it from others present in Burkina Faso (Table 11).

#### Chaerephon pumilus (Cretzschmar, 1830)

*Chaerephon pumilus* is the most easily found species in Burkina Faso among Molossidae. It is the smallest *Chaerephon* in Burkina Faso. It is therefore recognizable by its size. Present in a variety of habitats, in semi-arid areas in the North to the forest areas of the South (Happold, 1987), *C. pumilus* is present in all phytogeographic areas in Burkina Faso, even though it is mainly located in the Sudanian zone (Fig. 9). Only a few specimens are known from the Sahelian zones. Very often found in roofs of houses, *C. pumilus* finds in southern Burkina Faso, a variable and high number of habitats, able to serve as its lodging places.

### Genus Mops Lesson, 1842 Mops condylurus (A. Smith, 1833)

Found in the Sahelian areas and even in rainforests, *Mops condylurus* has no preference for any particular habitat (Rosevear, 1965). In Burkina Faso, it is located in the Sudanian zone (Fig. 9). The specimens have been captured in a shrubby savanna on the edge of a forest, in a shrubby savanna near a mountain assembly line, and next to a pond.

Measurements of body and cranial measurements do not help in distinguishing males from females (Table 11).

#### Mops demonstrator (Thomas, 1903)

Rarely seen in West Africa, it is the second time that *Mops demonstrator* is reported in Burkina Faso. The four specimens examined by Koopman et al. (1978), have been captured near the river Nazinon. The specimen examined during the BIOTA collect has also been captured along a stream in a grassy steppe. All specimens have been located in the extreme South in the South-Sudanian zone (Fig. 9). It is easily comparable to *M. condylurus*.

Cranial measurements do not allow to distinguish them, but the body measurements (Tail, FA, 3Met, 3Ph1, 3Ph2, 4Met, 4Ph1, 4Ph2, 5Met, Tib and HF) of *M. demonstrator* are smaller than those of *M. condylurus* (Table 11).

#### Mops midas (Sundevall, 1843)

*Mops midas* is a species of African savannas (Koopman, 1975) and particularly isolated in the forests of savannas (Peterson, 1972). Like all other *Mops* found in Burkina Faso, it is located in the Sudanian zone (Fig. 9). Only two specimens are reported from Burkina Faso. These specimens, examined by Koopman et al. (1978), have been captured near the river Nazinon, almost the same environment from where they reported *M. demonstrator*. This is the only area of presence of this species known to date in Burkina Faso, as no other specimen of *M. midas* has yet been captured.

It is the largest of *Mops* found in Burkina Faso. Aside from the measurement of tragus of *M. midas* which is below the minimum values of *M. condy-lurus* and those of *M. demonstator*, all other measurements of *M. midas* are superior to the maximum values of *M. condylurus* and the measurements of *M. demonstrator* (Table 11).

# Family VESPERTILIONIDAE Genus *Glauconycteris* Dobson, 1875 *Glauconycteris variegata* (Tomes, 1861)

*Glauconycteris variegata* is located in West Central area in the North-Sudanian zone (Fig. 10). As noted by Rosevear (1965) this is a species that inhabits open areas rather than rainforests.

### Genus *Myotis* Kaup, 1829 *Myotis bocagii* (Peters, 1870)

*Myotis bocagii* has been found in the southwest and southeast of the Sudanian zone (Fig. 10). It is a forest species also found in the gallery forests along rivers, in savanna areas (Green, 1983). All specimens captured during BIOTA collect are from the cliffs of Banfora. This is the second area where the species is identified.

# Genus *Neoromicia* Roberts, 1926 *Neoromicia capensis* (A. Smith, 1829)

*Neoromicia capensis* is located at the extreme southwestern area in South-Sudanian zone (Fig. 10). The specimen has been captured in a gallery forest along a stream between hills.

Measurements of body and cranial measurements of *N. capensis* exceed the maximum measurements (except Bm, 3Ph3, HF of males and except Bm, 3Ph3, HF, CC, and CM of females) of *N. somalica*. They are also higher than the maximum values (except 3Ph2, 3Ph3, Tib, HF of males and except HB, Tail, 3Ph3, 4Ph1 and HF of females) of *N. guineensis* (see Table 13 and 14). Body measurements do not really allow distinguishing them. However, measurement of the forearm of *N. capensis* is larger than that of *N. somalica* and *N. guineensis* (Table 12).



Figure 9. Distribution of Molossidae in Burkina Faso.

| Chaerephon major   |            |      |      |      |      |     |         |       |       |       |          |          |       |       |            |       |       |      |      |            |                                |                  |
|--------------------|------------|------|------|------|------|-----|---------|-------|-------|-------|----------|----------|-------|-------|------------|-------|-------|------|------|------------|--------------------------------|------------------|
| Sex                |            | BM   | TL   | Т    | Е    | TR  | FA      | 3Met  | 3Ph1  | 3Ph2  | 3Ph3     | 4Met     | 4Ph1  | 4Ph2  | 5Met       | 5Ph1  | 5Ph2  | TB   | HF   | C-C        | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
|                    | х          | 15.1 | 66.7 | 34.3 | 17.1 | 3.5 | 43.0    | 44.0  | 19.0  | 17.7  | 8.3      | 42.2     | 15.6  | 12.2  | 27.4       | 13.4  | 5.1   | 13.4 | 8.3  | 4.97       | 8.20                           | 7.01             |
|                    | $\pm$ SD   | 0.2  | 0.3  | 2.6  | 0.7  | 0.1 | 0.8     | 1.3   | 0.9   | 0.6   | 1.2      | 1.2      | 0.5   | 0.7   | 1.0        | 0.3   | 0.5   | 0.7  | 0.6  | 0.08       | 0.07                           | 0.17             |
| 88                 | Min        | 14.8 | 66.2 | 31.1 | 16.0 | 3.4 | 42.0    | 42.2  | 18.0  | 16.7  | 7.1      | 41.0     | 14.9  | 11.2  | 25.9       | 13.0  | 4.6   | 12.3 | 7.6  | 4.84       | 8.14                           | 6.74             |
|                    | Max        | 15.3 | 66.9 | 36.9 | 17.8 | 3.7 | 44.2    | 45.8  | 20.1  | 18.5  | 10.0     | 43.9     | 16.1  | 13.0  | 28.4       | 13.9  | 5.5   | 14.3 | 9.4  | 5.06       | 8.31                           | 7.21             |
|                    | n=         | 3    | 4    | 4    | 4    | 4   | 5       | 4     | 4     | 4     | 4        | 4        | 4     | 4     | 4          | 4     | 4     | 5    | 5    | 4          | 4                              | 4                |
| ♀ (USNM            | 452890)    |      |      |      |      |     | 40.4    |       |       |       |          |          |       |       |            |       |       | 12.0 | 8.2  | 5.07       | 7.82                           | 6.65             |
|                    |            |      |      |      |      |     |         |       |       | Chae  | rephon   | nigeriae |       |       |            |       |       |      |      |            |                                |                  |
| Sex                |            | BM   | TL   | Т    | Е    | TR  | FA      | 3Met  | 3Ph1  | 3Ph2  | 3Ph3     | 4Met     | 4Ph1  | 4Ph2  | 5Met       | 5Ph1  | 5Ph2  | TB   | HF   | C-C        | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
| ð                  |            | 18.5 | 73.0 | 41.4 | 21.3 | 3.0 | 48.7    | 50.0  | 20.4  | 20.9  | 8.5      | 47.9     | 16.4  | 13.2  | 30.7       | 15.0  | 6.5   | 15.0 | 9.1  | 5.43       | 8.96                           | 7.60             |
| ð                  |            | 20.3 | 74.8 | 40.1 | 21.6 | 3.0 | 49.6    | 49.9  | 21.1  | 20.5  | 9.5      | 47.5     | 16.9  | 12.7  | 30.2       | 15.7  | 5.8   | 15.9 | 8.8  | 5.90       | 8.83                           | 7.64             |
| ę                  |            | 18.8 | 72.2 | 34.9 | 17.5 | 3.4 | 47.7    | 48.0  | 19.4  | 18.4  | 8.7      | 47.5     | 15.3  | 12.4  | 30.1       | 14.6  | 5.6   | 14.7 | 8.5  | 5.33       | 8.79                           | 7.43             |
| Chaerephon pumilus |            |      |      |      |      |     |         |       |       |       |          |          |       |       |            |       |       |      |      |            |                                |                  |
| Sex                |            | BM   | TL   | Т    | Е    | TR  | FA      | 3Met  | 3Ph1  | 3Ph2  | 3Ph3     | 4Met     | 4Ph1  | 4Ph2  | 5Met       | 5Ph1  | 5Ph2  | TB   | HF   | C-C        | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
|                    | Х          | 8.6  | 53.3 | 30.7 | 15.5 | 3.2 | 36.1    | 36.4  | 15.1  | 14.9  | 6.5      | 35.4     | 12.6  | 10.3  | 23.3       | 11.1  | 4.0   | 11.7 | 6.7  | 4.19       | 7.20                           | 5.90             |
|                    | $\pm$ SD   | 0.8  | 1.7  | 1.5  | 1.0  | 0.3 | 0.8     | 1.4   | 0.7   | 0.5   | 0.7      | 1.1      | 0.5   | 0.6   | 0.9        | 0.8   | 0.3   | 0.6  | 0.5  | 0.20       | 0.16                           | 0.12             |
| 88                 | Min        | 7.5  | 50.7 | 27.3 | 14.2 | 2.8 | 34.1    | 34.5  | 14.1  | 13.8  | 5.2      | 33.7     | 11.7  | 9.3   | 21.7       | 10.0  | 3.4   | 10.6 | 5.7  | 3.82       | 6.94                           | 5.63             |
|                    | Max        | 10.0 | 57.0 | 33.4 | 17.6 | 3.7 | 37.5    | 38.7  | 16.2  | 15.6  | 7.4      | 37.3     | 13.4  | 11.2  | 24.8       | 12.4  | 4.4   | 12.7 | 7.8  | 4.47       | 7.49                           | 6.10             |
|                    | n=         | 15   | 15   | 15   | 15   | 15  | 15      | 15    | 15    | 15    | 15       | 15       | 15    | 15    | 15         | 15    | 15    | 15   | 15   | 15         | 15                             | 15               |
|                    | Х          | 8.6  | 53.0 | 31.4 | 15.5 | 3.4 | 36.4    | 36.3  | 15.3  | 15.1  | 6.2      | 34.8     | 12.5  | 10.6  | 22.8       | 11.1  | 4.1   | 11.9 | 6.5  | 3.92       | 6.90                           | 5.79             |
| ₽ <i>₽</i>         | ± SD       | 0.9  | 1.9  | 2.0  | 0.7  | 0.4 | 0.6     | 1.2   | 0.6   | 0.7   | 0.5      | 1.1      | 0.6   | 0.7   | 0.8        | 0.7   | 0.2   | 0.8  | 0.5  | 0.08       | 0.21                           | 0.11             |
|                    | Min        | 7.0  | 50.7 | 28.5 | 13.8 | 2.9 | 35.5    | 34.7  | 14.0  | 14.0  | 5.4      | 33.3     | 11.5  | 9.3   | 21.4       | 9.7   | 3.7   | 10.3 | 6.0  | 3.78       | 6.53                           | 5.58             |
|                    | Max        | 10.0 | 57.7 | 34.7 | 16.6 | 4.3 | 37.6    | 38.4  | 16.3  | 16.4  | 7.1      | 37.1     | 13.4  | 11.6  | 24.2       | 12.4  | 4.5   | 12.9 | 7.7  | 4.06       | 7.18                           | 6.09             |
|                    | n=         | 15   | 15   | 15   | 15   | 15  | 15      | 15    | 15    | 15    | 15       | 15       | 15    | 15    | 15         | 15    | 15    | 15   | 15   | 15         | 15                             | 15               |
|                    |            |      |      |      |      |     |         |       |       | Mo    | ps condy | lurus    |       |       |            |       |       |      |      |            |                                |                  |
| Sex                |            | BM   | TL   | T    | E    | TR  | FA      | 3Met  | 3Ph1  | 3Ph2  | 3Ph3     | 4Met     | 4Ph1  | 4Ph2  | 5Met       | 5Ph1  | 5Ph2  | TB   | HF   | C-C        | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
| ් (SAD)            |            | 23.0 | 69.2 | 36.0 | 18.4 | 3.4 | 48.5    | 51.1  | 22.9  | 21.1  | 9.3      | 48.9     | 18.0  | 14.6  | 34.1       | 14.0  | 5.3   | 16.8 | 11.0 | 5.74       | 9.38                           | 7.51             |
| <u> </u>           |            | 23.8 | 69.8 | 39.4 | 18.9 | 2.8 | 48.2    | 48.8  | 23.4  | 22.2  | 10.3     | 47.5     | 18.9  | 15.8  | 34.0       | 14.6  | 5.5   | 17.2 | 11.0 | 5.68       | 8.78                           | 7.15             |
|                    | х          | 24.8 | 67.6 | 39.6 | 18.1 | 3.0 | 46.6    | 48.3  | 22.6  | 22.0  | 9.4      | 47.0     | 18.1  | 15.7  | 32.8       | 13.5  | 5.5   | 16.6 | 10.8 | 5.34       | 8.82                           | 7.35             |
| çφ                 | Min        | 23.5 | 66.6 | 37.5 | 17.5 | 2.8 | 45.3    | 47.5  | 21.7  | 21.9  | 8.2      | 46.3     | 17.2  | 15.2  | 32.0       | 13.4  | 5.2   | 16.2 | 10.6 | 5.15       | 8.74                           | 7.14             |
|                    | Max        | 26.0 | 69.4 | 42.5 | 18.6 | 3.2 | 48.4    | 50.2  | 23.3  | 22.2  | 10.6     | 48.4     | 18.6  | 16.3  | 33.6       | 13.7  | 5.8   | 17.1 | 11.2 | 5.55       | 9.05                           | 7.53             |
|                    | n=         | 4    | 4    | 4    | 4    | 4   | 4       | 4     | 4     | 4     | 4        | 4        | 4     | 4     | 4          | 4     | 4     | 4    | 4    | 4          | 4                              | 4                |
|                    |            | DM   | TI   | т.   | Е    | TD  | EA      | 214-1 | 201-1 | 201-2 | s demon  | strator  | 4DL 1 | 401-2 | <i>M</i> . | EDI-1 | EDI-2 | TD   | LIE  |            |                                |                  |
| Sex                |            | BM   |      | 1    | E    | 18  | FA      | 3Met  | 3Ph1  | 3Ph2  | 3Ph3     | 4Met     | 4Ph1  | 4Ph2  | 5Met       | 5Ph1  | 5Ph2  | 18   | HF   | <u>C-C</u> | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
| ¥                  |            | 23.8 | /1.8 | 54.1 | 17.7 | 5.8 | 45.4    | 44.1  | 18.0  | 17.5  | /.0      | 42.0     | 14.4  | 12.0  | 20.0       | 13.5  | 5.8   | 15.0 | 8.8  | 5.55       | 9.18                           | 1.55             |
|                    |            | DM   | TI   | т    | Е    | TD  | EA      | 2Mat  | 201-1 | 2062  | 2DL2     | 4Mat     | 4Db 1 | 4062  | 5Mat       | 5DL 1 | 5DL2  | TD   | HE   |            | 1010                           | <b>C</b> 14      |
|                    | NIM 6024   | BM   | 100  | 1    | 20   | 2   | FA 62.2 | Smet  | 3Ph1  | 3Ph2  | 3Ph3     | 4Met     | 4Ph1  | 4Ph2  | Smet       | 3Ph1  | 5Ph2  | 18.0 | 12.6 | C-C        | M <sup>2</sup> -M <sup>2</sup> | C-M <sup>3</sup> |
| $\pm$ AD (US       | INIVI 5039 | 130) | 100  | 47   | 28   | 2   | 03.5    |       |       |       |          |          |       |       |            |       |       | 18.9 | 15.0 | 8.50       | 11.84                          | 10.44            |

Table 11. Measurements of Molossidae from Burkina Faso.

#### Neoromicia guineensis (Bocage, 1889)

*Neoromicia guineensis* is present in almost all phytogeographic areas of Burkina Faso. It is widely distributed in the Sudanian zone with a few specimens in the North-Sahelian zone (Fig.10).

It is easily comparable to *N. somalica*. Although the weight (WB) of *N. guineensis* is greater than the weight of *N. somalica*, averages of body measurements (except Tail 3Ph1, 3Ph2, 3Ph3, 5Ph1, 5Ph2) of males from *N. somalica* are higher than those of males from *N. guineensis* and averages of body measurements (except Tail, 3Ph1, 3Ph2, 4Ph1, 4Ph2, 5Ph1, 5Ph2 and Tib) of females from *N. somalica* are higher than those of females from *N. guineensis*. The body measurements of males (except Bm and HB) from *N. somalica* and *N. guineensis* overlap, as well as those of females. Body measurements do not allow to distinguish them. However, the minimum cranial measurements of *N. somalica* are higher than the maximum cranial measurements of *N. guineensis* (Table 12). Only cranial measurements thus enable separating them. Averages of body measurements (except Ear, 3Ph2) and cranial measurements of females are higher than those of males.

#### Neoromicia nana (Peters, 1852)

Neoromicia nana is located in the South-Su-

danian zone (Fig.10). The specimens have been captured in a gallery forest along a water stream, in the cliffs of Banfora, in a woody savanna along a rupicolous bar, next to a dam and along a stream at the end of the hills.

### Neoromicia rendalli (Thomas, 1889)

It is located in the South-East in the South-Sudanian zone (Fig. 10). It seems to be essentially present in dry areas of Guinean, Sudanian and Sahelian open forests (Rosevear, 1965). The specimen has been captured in a woody savanna near a managed water point. It seems to be essentially present in dry areas of Guinea, Sudanian and Sahelian open forests (Rosevear, 1965). *Neoromicia rendalli* is easily distinguishable from other *Neoromicia* by the white color of its wings and its forearm which is longer than that of others present in Burkina Faso (Table 12).

#### Neoromicia somalica (Thomas, 1901)

*Neoromicia somalica* is less distributed than *N. guineensis*. This species is particularly located in the South-Sudanian zone (Fig. 10).

The averages of body measurements (except Tra, 3Ph1, 4Ph1, 4Ph2, 5Ph2 and HF) and cranial measurements (except CM) of females are larger than those of males. These are mainly measurements of the forearm and cranial measurements, especially those of the upper incisors show a slight difference between males which are slightly smaller than females (Table 12).

# Genus Nycticeinops Hill et Harrison, 1987 Nycticeinops schlieffenii (Peters, 1859)

*Nycticeinops schlieffenii* is present in almost all phytogeographic zones (Fig.10). Although no specimen has been captured in the South-Sahelian zone, this small bat inhabits open woodlands and drier areas (Rosevear, 1965). Its presence in the North-Sahelian zone shows that it will therefore not be surprising to capture it in the South-Sahelian zone.

The averages of body measurements (except Tra, 3Ph3) and cranial measurements (except CM) of females are slightly higher than those of males (Table 12).

# Genus *Pipistrellus* Kaup, 1829 *Pipistrellus deserti* Thomas, 1902

*Pipistrellus deserti* is located in the South-central zone in South-Sudanian area (Fig. 10). Only one specimen has been captured in Burkina Faso (Koopman et al., 1978). This species is rarely found in West Africa. Its presence was unexpected in Burkina Faso particularly because it is known to be a northern Sahara species (Horáček et al., 2000; Fahr et al., 2006).

### Pipistrellus inexspectatus Aellen, 1959

*Pipistrellus inexspectatus* is located in the southwest in the South-Sudanian zone (Fig. 10). Only two specimens have been captured in a wooded savanna along a rupicolous bar and in a gallery forest in a protected forest.

### Pipistrellus nanulus Thomas, 1904

Like *Pipistrellus deserti*, only one specimen of *P. nanulus* has been captured in Burkina Faso. It is located at the Centre in the North-Sudanian zone (Fig. 10).

It is more easily comparable to *P. rusticus* whose body measurements, in particular the measurements of the forearm do not help in the distinction. The best measurements to separate them remaining the cranial ones which clearly show that *P. nanulus* is smaller than *P. rusticus*. Indeed, the cranial measurements of *P. nanulus* are below the minimum measurements of *P. rusticus* (Table 12). It is the smallest *Pipistrellus* found in Burkina Faso.

#### Pipistrellus rusticus (Tomes, 1861)

*Pipistrellus rusticus* is located in the Southwest in the South-Sudanian area and at the center in the North-Sudanian zone (Fig. 10). The specimens have been captured near a pond, in the cliffs of Banfora, along a stream at the end of the hills and in an orchard.

*Pipistrellus rusticus* is smaller than *P. inex-spectatus*. Only body measurements (HB, Tail, Ear, Tra, 3Ph3 and HF) of *P. inexspectatus* are below the maximum measurements of the body of *P. rusticus*. The other body measurements in particular measurement of the forearm and wings and cranial measurement of the forearm and wings and cranial measurements.



Figure 10/1. Distribution of Vespertilionidae in Burkina Faso.



Figure 10/2. Distribution of Vespertilionidae in Burkina Faso.

| Glauconycteris variegata                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                           |                                                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                          |                                                                                                                                                                                           |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     |                                                                                                                                                           |                                                                                                                                                              |                                                                                                                                          |                                                                                                                                                                          |                                                                                                                                                                                                                     |                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sex                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                              | BM                                                                                                                                                                                                                                        | TL                                                                                                                                                                                             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Е                                                                                                                                                                                 | TR                                                                                                                                                        | FA                                                                                                                                                         | 3Met                                                                                                                                                            | 3Ph1                                                                                                                                                                                           | 3Ph2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3Ph3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4Met                                                                                                                                                                                     | 4Ph1                                                                                                                                                                                      | 4Ph2                                                                                                                                                                | 5Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5Ph1                                                                                                                                                                | 5Ph2                                                                                                                                                      | TB                                                                                                                                                           | HF                                                                                                                                       | C-C                                                                                                                                                                      | M <sup>3</sup> -M <sup>3</sup>                                                                                                                                                                                      | C-M <sup>3</sup>                                                                                                                                                              |
| ♀ (SAD                                                                                  | ))                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.5                                                                                                                                                                                                                                      | 53.1                                                                                                                                                                                           | 51.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13.3                                                                                                                                                                              | 6.2                                                                                                                                                       | 44.8                                                                                                                                                       | 41.8                                                                                                                                                            | 16.1                                                                                                                                                                                           | 21.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40.1                                                                                                                                                                                     | 11.6                                                                                                                                                                                      | 11.0                                                                                                                                                                | 39.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.0                                                                                                                                                                | 7.9                                                                                                                                                       | 20.6                                                                                                                                                         | 8.1                                                                                                                                      | 4.62                                                                                                                                                                     | 7.06                                                                                                                                                                                                                | 4.87                                                                                                                                                                          |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                           |                                                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                                                | Mye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | otis boca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | gii                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     |                                                                                                                                                           |                                                                                                                                                              |                                                                                                                                          |                                                                                                                                                                          |                                                                                                                                                                                                                     |                                                                                                                                                                               |
| Sex                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                              | BM                                                                                                                                                                                                                                        | TL                                                                                                                                                                                             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Е                                                                                                                                                                                 | TR                                                                                                                                                        | FA                                                                                                                                                         | 3Met                                                                                                                                                            | 3Ph1                                                                                                                                                                                           | 3Ph2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3Ph3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4Met                                                                                                                                                                                     | 4Ph1                                                                                                                                                                                      | 4Ph2                                                                                                                                                                | 5Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5Ph1                                                                                                                                                                | 5Ph2                                                                                                                                                      | TB                                                                                                                                                           | HF                                                                                                                                       | C-C                                                                                                                                                                      | $M^3-M^3$                                                                                                                                                                                                           | C-M <sup>3</sup>                                                                                                                                                              |
| ð                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.5                                                                                                                                                                                                                                       | 52.5                                                                                                                                                                                           | 38.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.1                                                                                                                                                                              | 7.5                                                                                                                                                       | 34.7                                                                                                                                                       | 36.6                                                                                                                                                            | 14.2                                                                                                                                                                                           | 10.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35.1                                                                                                                                                                                     | 10.2                                                                                                                                                                                      | 7.6                                                                                                                                                                 | 33.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.8                                                                                                                                                                 | 6.3                                                                                                                                                       | 17.2                                                                                                                                                         | 10.6                                                                                                                                     | 3.83                                                                                                                                                                     | 5.77                                                                                                                                                                                                                | 5.61                                                                                                                                                                          |
| Ŷ                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.5                                                                                                                                                                                                                                       | 53.1                                                                                                                                                                                           | 39.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.2                                                                                                                                                                              | 7.2                                                                                                                                                       | 37.7                                                                                                                                                       | 37.0                                                                                                                                                            | 15.7                                                                                                                                                                                           | 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37.6                                                                                                                                                                                     | 11.6                                                                                                                                                                                      | 7.7                                                                                                                                                                 | 34.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.1                                                                                                                                                                | 6.7                                                                                                                                                       | 18.6                                                                                                                                                         | 10.9                                                                                                                                     | 3.98                                                                                                                                                                     | 5.87                                                                                                                                                                                                                | 5.78                                                                                                                                                                          |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                           |                                                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                                                | Neoron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nicia ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pensis                                                                                                                                                                                   |                                                                                                                                                                                           |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     |                                                                                                                                                           |                                                                                                                                                              |                                                                                                                                          |                                                                                                                                                                          |                                                                                                                                                                                                                     |                                                                                                                                                                               |
| Sex                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                              | BM                                                                                                                                                                                                                                        | TL                                                                                                                                                                                             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Е                                                                                                                                                                                 | TR                                                                                                                                                        | FA                                                                                                                                                         | 3Met                                                                                                                                                            | 3Ph1                                                                                                                                                                                           | 3Ph2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3Ph3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4Met                                                                                                                                                                                     | 4Ph1                                                                                                                                                                                      | 4Ph2                                                                                                                                                                | 5Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5Ph1                                                                                                                                                                | 5Ph2                                                                                                                                                      | TB                                                                                                                                                           | HF                                                                                                                                       | C-C                                                                                                                                                                      | M <sup>3</sup> -M <sup>3</sup>                                                                                                                                                                                      | C-M <sup>3</sup>                                                                                                                                                              |
| ð                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.3                                                                                                                                                                                                                                       | 50.9                                                                                                                                                                                           | 33.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.4                                                                                                                                                                              | 6.8                                                                                                                                                       | 32.3                                                                                                                                                       | 31.6                                                                                                                                                            | 12.2                                                                                                                                                                                           | 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30.1                                                                                                                                                                                     | 10.4                                                                                                                                                                                      | 10.3                                                                                                                                                                | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.0                                                                                                                                                                | 7.0                                                                                                                                                       | 12.8                                                                                                                                                         | 6.2                                                                                                                                      | 4.30                                                                                                                                                                     | 5.66                                                                                                                                                                                                                | 4.74                                                                                                                                                                          |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                           |                                                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                                                | Neorom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | icia gui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | neensis                                                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     |                                                                                                                                                           |                                                                                                                                                              |                                                                                                                                          |                                                                                                                                                                          |                                                                                                                                                                                                                     |                                                                                                                                                                               |
| Sex                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                              | BM                                                                                                                                                                                                                                        | TL                                                                                                                                                                                             | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E                                                                                                                                                                                 | TR                                                                                                                                                        | FA                                                                                                                                                         | 3Met                                                                                                                                                            | 3Ph1                                                                                                                                                                                           | 3Ph2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3Ph3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4Met                                                                                                                                                                                     | 4Ph1                                                                                                                                                                                      | 4Ph2                                                                                                                                                                | 5Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5Ph1                                                                                                                                                                | 5Ph2                                                                                                                                                      | TB                                                                                                                                                           | HF                                                                                                                                       | C-C                                                                                                                                                                      | M <sup>3</sup> -M <sup>3</sup>                                                                                                                                                                                      | C-M <sup>3</sup>                                                                                                                                                              |
|                                                                                         | X                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0                                                                                                                                                                                                                                       | 36.7                                                                                                                                                                                           | 30.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.3                                                                                                                                                                              | 4.5                                                                                                                                                       | 27.2                                                                                                                                                       | 26.2                                                                                                                                                            | 10.2                                                                                                                                                                                           | 8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.7                                                                                                                                                                                     | 9.0                                                                                                                                                                                       | 6.1                                                                                                                                                                 | 25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.4                                                                                                                                                                 | 4.1                                                                                                                                                       | 10.9                                                                                                                                                         | 5.5                                                                                                                                      | 3.18                                                                                                                                                                     | 4.57                                                                                                                                                                                                                | 3.72                                                                                                                                                                          |
|                                                                                         | ± SD                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.3                                                                                                                                                                                                                                       | 1.4                                                                                                                                                                                            | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.8                                                                                                                                                                               | 0.4                                                                                                                                                       | 1.4                                                                                                                                                        | 1.0                                                                                                                                                             | 0.5                                                                                                                                                                                            | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0                                                                                                                                                                                      | 0.5                                                                                                                                                                                       | 0.3                                                                                                                                                                 | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5                                                                                                                                                                 | 0.4                                                                                                                                                       | 0.7                                                                                                                                                          | 0.4                                                                                                                                      | 0.11                                                                                                                                                                     | 0.15                                                                                                                                                                                                                | 0.09                                                                                                                                                                          |
| ଟଟ                                                                                      | Min                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                                                                                                                                                       | 34.5                                                                                                                                                                                           | 25.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.9                                                                                                                                                                               | 4.0                                                                                                                                                       | 25.4                                                                                                                                                       | 24.4                                                                                                                                                            | 9.2                                                                                                                                                                                            | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.3                                                                                                                                                                                     | 8.2                                                                                                                                                                                       | 5.2                                                                                                                                                                 | 23.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.6                                                                                                                                                                 | 3.1                                                                                                                                                       | 9.8                                                                                                                                                          | 4.6                                                                                                                                      | 2.99                                                                                                                                                                     | 4.36                                                                                                                                                                                                                | 3.53                                                                                                                                                                          |
|                                                                                         | Max                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.5                                                                                                                                                                                                                                       | 39.2                                                                                                                                                                                           | 35.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12.0                                                                                                                                                                              | 5.2                                                                                                                                                       | 31.2                                                                                                                                                       | 27.8                                                                                                                                                            | 24                                                                                                                                                                                             | 10.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.8                                                                                                                                                                                     | 10.3                                                                                                                                                                                      | 6.7                                                                                                                                                                 | 27.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.4                                                                                                                                                                 | 5.0                                                                                                                                                       | 13.5                                                                                                                                                         | 0.0                                                                                                                                      | 3.39                                                                                                                                                                     | 4.92                                                                                                                                                                                                                | 3.87                                                                                                                                                                          |
|                                                                                         | n=<br>v                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24                                                                                                                                                                                                                                        | 24                                                                                                                                                                                             | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.1                                                                                                                                                                              | 24                                                                                                                                                        | 25                                                                                                                                                         | 24                                                                                                                                                              | 10.7                                                                                                                                                                                           | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24                                                                                                                                                                                       | 0.5                                                                                                                                                                                       | 6.2                                                                                                                                                                 | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.0                                                                                                                                                                 | 4.2                                                                                                                                                       | 11.2                                                                                                                                                         | 25                                                                                                                                       | 23                                                                                                                                                                       | 4.67                                                                                                                                                                                                                | 2.70                                                                                                                                                                          |
|                                                                                         | л<br>+ SD                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.3                                                                                                                                                                                                                                       | 17                                                                                                                                                                                             | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4                                                                                                                                                                               | 4.0                                                                                                                                                       | 28.2                                                                                                                                                       | 1.2                                                                                                                                                             | 0.4                                                                                                                                                                                            | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.2                                                                                                                                                                                      | 9.5                                                                                                                                                                                       | 0.5                                                                                                                                                                 | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5                                                                                                                                                                 | 4.5                                                                                                                                                       | 0.6                                                                                                                                                          | 0.5                                                                                                                                      | 0.14                                                                                                                                                                     | 4.07                                                                                                                                                                                                                | 0.10                                                                                                                                                                          |
| 00                                                                                      | ± SD<br>Min                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.0                                                                                                                                                                                                                                       | 36.0                                                                                                                                                                                           | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4                                                                                                                                                                               | 3.0                                                                                                                                                       | 27.0                                                                                                                                                       | 25.2                                                                                                                                                            | 0.4                                                                                                                                                                                            | 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.5                                                                                                                                                                                     | 8.5                                                                                                                                                                                       | 5.4                                                                                                                                                                 | 24.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.0                                                                                                                                                                 | 3.5                                                                                                                                                       | 0.0                                                                                                                                                          | 4.4                                                                                                                                      | 3 13                                                                                                                                                                     | 4.47                                                                                                                                                                                                                | 3.61                                                                                                                                                                          |
| + +                                                                                     | Max                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43                                                                                                                                                                                                                                        | 42.1                                                                                                                                                                                           | 35.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.9                                                                                                                                                                              | 4.9                                                                                                                                                       | 29.6                                                                                                                                                       | 29.2                                                                                                                                                            | 11.5                                                                                                                                                                                           | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29.3                                                                                                                                                                                     | 10.4                                                                                                                                                                                      | 7.1                                                                                                                                                                 | 24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.5                                                                                                                                                                 | 49                                                                                                                                                        | 12.0                                                                                                                                                         | 6.3                                                                                                                                      | 3.61                                                                                                                                                                     | 4.47                                                                                                                                                                                                                | 3.01                                                                                                                                                                          |
|                                                                                         | n=                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                                                                                                                                                                                                                                        | 12                                                                                                                                                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10.9                                                                                                                                                                              | 11                                                                                                                                                        | 14                                                                                                                                                         | 12                                                                                                                                                              | 11.5                                                                                                                                                                                           | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                                                       | 11                                                                                                                                                                                        | 11                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                  | 11                                                                                                                                                        | 12.0                                                                                                                                                         | 14                                                                                                                                       | 14                                                                                                                                                                       | 14                                                                                                                                                                                                                  | 14                                                                                                                                                                            |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           | 12                                                                                                                                                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                                                |                                                                                                                                                           | 14                                                                                                                                                         | 12                                                                                                                                                              | 11                                                                                                                                                                                             | Neor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | omicia r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nana                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                                                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11                                                                                                                                                                  |                                                                                                                                                           | 14                                                                                                                                                           | 14                                                                                                                                       | 14                                                                                                                                                                       | 14                                                                                                                                                                                                                  | 14                                                                                                                                                                            |
| Sex                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                              | BM                                                                                                                                                                                                                                        | TL                                                                                                                                                                                             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Е                                                                                                                                                                                 | TR                                                                                                                                                        | FA                                                                                                                                                         | 3Met                                                                                                                                                            | 3Ph1                                                                                                                                                                                           | 3Ph2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3Ph3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4Met                                                                                                                                                                                     | 4Ph1                                                                                                                                                                                      | 4Ph2                                                                                                                                                                | 5Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5Ph1                                                                                                                                                                | 5Ph2                                                                                                                                                      | TB                                                                                                                                                           | HF                                                                                                                                       | C-C                                                                                                                                                                      | M <sup>3</sup> -M <sup>3</sup>                                                                                                                                                                                      | C-M <sup>3</sup>                                                                                                                                                              |
|                                                                                         | х                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.3                                                                                                                                                                                                                                       | 38.0                                                                                                                                                                                           | 29.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.7                                                                                                                                                                               | 3.6                                                                                                                                                       | 27.6                                                                                                                                                       | 26.8                                                                                                                                                            | 8.7                                                                                                                                                                                            | 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.5                                                                                                                                                                                     | 7.3                                                                                                                                                                                       | 5.2                                                                                                                                                                 | 26.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.4                                                                                                                                                                 | 3.5                                                                                                                                                       | 10.0                                                                                                                                                         | 5.6                                                                                                                                      | 3.25                                                                                                                                                                     | 4.37                                                                                                                                                                                                                | 3.62                                                                                                                                                                          |
|                                                                                         | $\pm$ SD                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.6                                                                                                                                                                                                                                       | 1.4                                                                                                                                                                                            | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4                                                                                                                                                                               | 0.4                                                                                                                                                       | 1.1                                                                                                                                                        | 1.0                                                                                                                                                             | 0.5                                                                                                                                                                                            | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0                                                                                                                                                                                      | 0.5                                                                                                                                                                                       | 0.5                                                                                                                                                                 | 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4                                                                                                                                                                 | 0.3                                                                                                                                                       | 0.4                                                                                                                                                          | 0.3                                                                                                                                      | 0.10                                                                                                                                                                     | 0.14                                                                                                                                                                                                                | 0.09                                                                                                                                                                          |
| 39                                                                                      | Min                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.4                                                                                                                                                                                                                                       | 34.7                                                                                                                                                                                           | 24.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.9                                                                                                                                                                               | 2.9                                                                                                                                                       | 25.8                                                                                                                                                       | 25.4                                                                                                                                                            | 7.9                                                                                                                                                                                            | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 25.0                                                                                                                                                                                     | 5.8                                                                                                                                                                                       | 4.2                                                                                                                                                                 | 24.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.9                                                                                                                                                                 | 2.9                                                                                                                                                       | 9.2                                                                                                                                                          | 4.9                                                                                                                                      | 3.02                                                                                                                                                                     | 4.16                                                                                                                                                                                                                | 3.44                                                                                                                                                                          |
|                                                                                         | Max                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.0                                                                                                                                                                                                                                       | 40.9                                                                                                                                                                                           | 33.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.7                                                                                                                                                                              | 4.9                                                                                                                                                       | 30.1                                                                                                                                                       | 29.2                                                                                                                                                            | 10.0                                                                                                                                                                                           | 8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28.9                                                                                                                                                                                     | 7.9                                                                                                                                                                                       | 6.1                                                                                                                                                                 | 27.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.5                                                                                                                                                                 | 4.0                                                                                                                                                       | 10.6                                                                                                                                                         | 6.1                                                                                                                                      | 3.40                                                                                                                                                                     | 4.62                                                                                                                                                                                                                | 3.79                                                                                                                                                                          |
|                                                                                         | n=                                                                                                                                                                                                                                                                                                                                                                                                                                           | 22                                                                                                                                                                                                                                        | 22                                                                                                                                                                                             | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22                                                                                                                                                                                | 22                                                                                                                                                        | 22                                                                                                                                                         | 22                                                                                                                                                              | 22                                                                                                                                                                                             | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22                                                                                                                                                                                       | 22                                                                                                                                                                                        | 22                                                                                                                                                                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22                                                                                                                                                                  | 22                                                                                                                                                        | 22                                                                                                                                                           | 22                                                                                                                                       | 22                                                                                                                                                                       | 22                                                                                                                                                                                                                  | 22                                                                                                                                                                            |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                           |                                                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                                                | Neoroi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nicia rei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ndalli                                                                                                                                                                                   |                                                                                                                                                                                           |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     |                                                                                                                                                           |                                                                                                                                                              |                                                                                                                                          |                                                                                                                                                                          |                                                                                                                                                                                                                     |                                                                                                                                                                               |
| Sex                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                              | BM                                                                                                                                                                                                                                        | TL                                                                                                                                                                                             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Е                                                                                                                                                                                 | TR                                                                                                                                                        | FA                                                                                                                                                         | 3Met                                                                                                                                                            | 3Ph1                                                                                                                                                                                           | 3Ph2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3Ph3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4Met                                                                                                                                                                                     | 4Ph1                                                                                                                                                                                      | 4Ph2                                                                                                                                                                | 5Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5Ph1                                                                                                                                                                | 5Ph2                                                                                                                                                      | TB                                                                                                                                                           | HF                                                                                                                                       | C-C                                                                                                                                                                      | M <sup>3</sup> -M <sup>3</sup>                                                                                                                                                                                      | C-M <sup>3</sup>                                                                                                                                                              |
| ♀ (S                                                                                    | SAD)                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.8                                                                                                                                                                                                                                       | 46.6                                                                                                                                                                                           | 37.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.4                                                                                                                                                                              | 4.7                                                                                                                                                       | 35.2                                                                                                                                                       | 34.4                                                                                                                                                            | 11.3                                                                                                                                                                                           | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34.0                                                                                                                                                                                     | 10.5                                                                                                                                                                                      | 6.0                                                                                                                                                                 | 32.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.0                                                                                                                                                                 | 4.3                                                                                                                                                       | 12.8                                                                                                                                                         | 6.8                                                                                                                                      | 4.15                                                                                                                                                                     | 5.90                                                                                                                                                                                                                | 4.47                                                                                                                                                                          |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                           |                                                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                                                | Neoron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | icia son                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nalica                                                                                                                                                                                   |                                                                                                                                                                                           |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     |                                                                                                                                                           |                                                                                                                                                              |                                                                                                                                          |                                                                                                                                                                          |                                                                                                                                                                                                                     |                                                                                                                                                                               |
| Sex                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                              | BM                                                                                                                                                                                                                                        | TL                                                                                                                                                                                             | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E                                                                                                                                                                                 | TR                                                                                                                                                        | FA                                                                                                                                                         | 3Met                                                                                                                                                            | 3Ph1                                                                                                                                                                                           | 3Ph2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3Ph3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4Met                                                                                                                                                                                     | 4Ph1                                                                                                                                                                                      | 4Ph2                                                                                                                                                                | 5Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5Ph1                                                                                                                                                                | 5Ph2                                                                                                                                                      | TB                                                                                                                                                           | HF                                                                                                                                       | C-C                                                                                                                                                                      | M <sup>3</sup> -M <sup>3</sup>                                                                                                                                                                                      | C-M <sup>3</sup>                                                                                                                                                              |
|                                                                                         | x                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                   |                                                                                                                                                           |                                                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                          |                                                                                                                                                                                           | 63                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                     |                                                                                                                                                           |                                                                                                                                                              |                                                                                                                                          |                                                                                                                                                                          |                                                                                                                                                                                                                     | 4 45                                                                                                                                                                          |
|                                                                                         | ~                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.4                                                                                                                                                                                                                                       | 43.9                                                                                                                                                                                           | 27.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.3                                                                                                                                                                              | 5.2                                                                                                                                                       | 28.2                                                                                                                                                       | 27.1                                                                                                                                                            | 10.1                                                                                                                                                                                           | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.5                                                                                                                                                                                     | 9.2                                                                                                                                                                                       | 0.5                                                                                                                                                                 | 26.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.0                                                                                                                                                                 | 4.1                                                                                                                                                       | 10.8                                                                                                                                                         | 6.1                                                                                                                                      | 4.00                                                                                                                                                                     | 5.36                                                                                                                                                                                                                | 4.45                                                                                                                                                                          |
|                                                                                         | ± SD                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.4<br>0.3                                                                                                                                                                                                                                | 43.9<br>1.3                                                                                                                                                                                    | 27.8<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.3<br>0.4                                                                                                                                                                       | 5.2<br>0.3                                                                                                                                                | 28.2<br>0.6                                                                                                                                                | 27.1<br>0.8                                                                                                                                                     | 10.1<br>0.4                                                                                                                                                                                    | 8.6<br>0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.2<br>0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26.5<br>0.9                                                                                                                                                                              | 9.2<br>0.4                                                                                                                                                                                | 0.2                                                                                                                                                                 | 26.7<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.0<br>0.5                                                                                                                                                          | 4.1<br>0.2                                                                                                                                                | 10.8<br>0.3                                                                                                                                                  | 6.1<br>0.2                                                                                                                               | 4.00<br>0.15                                                                                                                                                             | 5.36<br>0.14                                                                                                                                                                                                        | 4.45<br>0.09                                                                                                                                                                  |
| රීරී                                                                                    | ± SD<br>Min                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.4<br>0.3<br>4.0                                                                                                                                                                                                                         | 43.9<br>1.3<br>42.4                                                                                                                                                                            | 27.8<br>1.5<br>25.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.3<br>0.4<br>10.9                                                                                                                                                               | 5.2<br>0.3<br>4.7                                                                                                                                         | 28.2<br>0.6<br>27.1                                                                                                                                        | 27.1<br>0.8<br>25.4                                                                                                                                             | 10.1<br>0.4<br>9.5                                                                                                                                                                             | 8.6<br>0.3<br>8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.2<br>0.6<br>5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.5<br>0.9<br>24.7                                                                                                                                                                      | 9.2<br>0.4<br>8.4                                                                                                                                                                         | 0.2<br>6.0                                                                                                                                                          | 26.7<br>0.7<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.0<br>0.5<br>6.5                                                                                                                                                   | 4.1<br>0.2<br>3.8                                                                                                                                         | 10.8<br>0.3<br>10.4                                                                                                                                          | 6.1<br>0.2<br>5.8                                                                                                                        | 4.00<br>0.15<br>3.83                                                                                                                                                     | 5.36<br>0.14<br>5.16                                                                                                                                                                                                | 4.43<br>0.09<br>4.35                                                                                                                                                          |
| රීරී                                                                                    | ± SD<br>Min<br>Max                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.4<br>0.3<br>4.0<br>4.8                                                                                                                                                                                                                  | 43.9<br>1.3<br>42.4<br>46.6                                                                                                                                                                    | 27.8<br>1.5<br>25.6<br>29.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.3<br>0.4<br>10.9<br>11.8                                                                                                                                                       | 5.2<br>0.3<br>4.7<br>5.7                                                                                                                                  | 28.2<br>0.6<br>27.1<br>29.0                                                                                                                                | 27.1<br>0.8<br>25.4<br>28.0                                                                                                                                     | 10.1<br>0.4<br>9.5<br>10.7                                                                                                                                                                     | 8.6<br>0.3<br>8.0<br>9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.2<br>0.6<br>5.4<br>7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.5<br>0.9<br>24.7<br>27.7                                                                                                                                                              | 9.2<br>0.4<br>8.4<br>9.8                                                                                                                                                                  | 0.2<br>6.0<br>6.6                                                                                                                                                   | 26.7<br>0.7<br>25.0<br>27.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.0<br>0.5<br>6.5<br>7.9                                                                                                                                            | 4.1<br>0.2<br>3.8<br>4.4                                                                                                                                  | 10.8<br>0.3<br>10.4<br>11.1                                                                                                                                  | 6.1<br>0.2<br>5.8<br>6.5                                                                                                                 | 4.00<br>0.15<br>3.83<br>4.22                                                                                                                                             | 5.36<br>0.14<br>5.16<br>5.54                                                                                                                                                                                        | 4.43<br>0.09<br>4.35<br>4.60                                                                                                                                                  |
| ්ථ                                                                                      | ± SD<br>Min<br>Max<br>n=                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.4<br>0.3<br>4.0<br>4.8<br>7                                                                                                                                                                                                             | 43.9<br>1.3<br>42.4<br>46.6<br>7                                                                                                                                                               | 27.8<br>1.5<br>25.6<br>29.6<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.3<br>0.4<br>10.9<br>11.8<br>7                                                                                                                                                  | 5.2<br>0.3<br>4.7<br>5.7<br>7                                                                                                                             | 28.2<br>0.6<br>27.1<br>29.0<br>7                                                                                                                           | 27.1<br>0.8<br>25.4<br>28.0<br>7                                                                                                                                | 10.1<br>0.4<br>9.5<br>10.7<br>7                                                                                                                                                                | 8.6<br>0.3<br>8.0<br>9.1<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.2<br>0.6<br>5.4<br>7.3<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26.5<br>0.9<br>24.7<br>27.7<br>7                                                                                                                                                         | 9.2<br>0.4<br>8.4<br>9.8<br>7                                                                                                                                                             | 0.2<br>6.0<br>6.6<br>7                                                                                                                                              | 26.7<br>0.7<br>25.0<br>27.2<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.0<br>0.5<br>6.5<br>7.9<br>7                                                                                                                                       | 4.1<br>0.2<br>3.8<br>4.4<br>7                                                                                                                             | 10.8<br>0.3<br>10.4<br>11.1<br>7                                                                                                                             | 6.1<br>0.2<br>5.8<br>6.5<br>7                                                                                                            | 4.00<br>0.15<br>3.83<br>4.22<br>7                                                                                                                                        | 5.36<br>0.14<br>5.16<br>5.54<br>6                                                                                                                                                                                   | 4.45<br>0.09<br>4.35<br>4.60<br>6                                                                                                                                             |
| රීරී                                                                                    | ± SD<br>Min<br>Max<br>n=<br>X                                                                                                                                                                                                                                                                                                                                                                                                                | 4.4<br>0.3<br>4.0<br>4.8<br>7<br>5.3                                                                                                                                                                                                      | 43.9<br>1.3<br>42.4<br>46.6<br>7<br>45.9                                                                                                                                                       | 27.8<br>1.5<br>25.6<br>29.6<br>7<br>30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.3<br>0.4<br>10.9<br>11.8<br>7<br>11.4                                                                                                                                          | 5.2<br>0.3<br>4.7<br>5.7<br>7<br>4.9                                                                                                                      | 28.2<br>0.6<br>27.1<br>29.0<br>7<br>29.3                                                                                                                   | 27.1<br>0.8<br>25.4<br>28.0<br>7<br>28.4                                                                                                                        | 10.1<br>0.4<br>9.5<br>10.7<br>7<br>10.0                                                                                                                                                        | 8.6<br>0.3<br>8.0<br>9.1<br>7<br>8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.2<br>0.6<br>5.4<br>7.3<br>7<br>6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 26.5<br>0.9<br>24.7<br>27.7<br>7<br>27.9                                                                                                                                                 | 9.2<br>0.4<br>8.4<br>9.8<br>7<br>9.2                                                                                                                                                      | 0.2<br>6.0<br>6.6<br>7<br>6.3                                                                                                                                       | 26.7<br>0.7<br>25.0<br>27.2<br>7<br>27.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.0<br>0.5<br>6.5<br>7.9<br>7<br>7.3                                                                                                                                | 4.1<br>0.2<br>3.8<br>4.4<br>7<br>3.9                                                                                                                      | 10.8<br>0.3<br>10.4<br>11.1<br>7<br>10.9                                                                                                                     | 6.1<br>0.2<br>5.8<br>6.5<br>7<br>5.8                                                                                                     | 4.00<br>0.15<br>3.83<br>4.22<br>7<br>4.09                                                                                                                                | 5.36<br>0.14<br>5.16<br>5.54<br>6<br>5.39                                                                                                                                                                           | 4.45<br>0.09<br>4.35<br>4.60<br>6<br>4.41                                                                                                                                     |
| 33<br>                                                                                  | $\frac{\pm SD}{Min}$ $\frac{Max}{n=}$ $\frac{X}{\pm SD}$                                                                                                                                                                                                                                                                                                                                                                                     | 4.4<br>0.3<br>4.0<br>4.8<br>7<br>5.3<br>0.8                                                                                                                                                                                               | 43.9<br>1.3<br>42.4<br>46.6<br>7<br>45.9<br>1.7                                                                                                                                                | 27.8<br>1.5<br>25.6<br>29.6<br>7<br>30.0<br>1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.3<br>0.4<br>10.9<br>11.8<br>7<br>11.4<br>0.4                                                                                                                                   | 5.2<br>0.3<br>4.7<br>5.7<br>7<br>4.9<br>0.4                                                                                                               | 28.2<br>0.6<br>27.1<br>29.0<br>7<br>29.3<br>1.0                                                                                                            | 27.1<br>0.8<br>25.4<br>28.0<br>7<br>28.4<br>0.9                                                                                                                 | 10.1<br>0.4<br>9.5<br>10.7<br>7<br>10.0<br>0.4                                                                                                                                                 | 8.6<br>0.3<br>8.0<br>9.1<br>7<br>8.7<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.2<br>0.6<br>5.4<br>7.3<br>7<br>6.4<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26.5<br>0.9<br>24.7<br>27.7<br>7<br>27.9<br>1.0                                                                                                                                          | 9.2<br>0.4<br>8.4<br>9.8<br>7<br>9.2<br>0.6                                                                                                                                               | 0.2<br>6.0<br>6.6<br>7<br>6.3<br>0.3                                                                                                                                | 26.7<br>0.7<br>25.0<br>27.2<br>7<br>27.9<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.0<br>0.5<br>6.5<br>7.9<br>7<br>7.3<br>0.4                                                                                                                         | 4.1<br>0.2<br>3.8<br>4.4<br>7<br>3.9<br>0.2                                                                                                               | 10.8<br>0.3<br>10.4<br>11.1<br>7<br>10.9<br>0.4                                                                                                              | 6.1<br>0.2<br>5.8<br>6.5<br>7<br>5.8<br>0.4                                                                                              | 4.00<br>0.15<br>3.83<br>4.22<br>7<br>4.09<br>0.12                                                                                                                        | 5.36<br>0.14<br>5.16<br>5.54<br>6<br>5.39<br>0.14                                                                                                                                                                   | 4.43<br>0.09<br>4.35<br>4.60<br>6<br>4.41<br>0.08                                                                                                                             |
| °°°                                                                                     | $\frac{\pm SD}{Min}$ $\frac{Max}{n=}$ $\frac{X}{\pm SD}$ $Min$ $\frac{Min}{Max}$                                                                                                                                                                                                                                                                                                                                                             | 4.4<br>0.3<br>4.0<br>4.8<br>7<br>5.3<br>0.8<br>4.3                                                                                                                                                                                        | 43.9<br>1.3<br>42.4<br>46.6<br>7<br>45.9<br>1.7<br>41.2                                                                                                                                        | 27.8<br>1.5<br>25.6<br>29.6<br>7<br>30.0<br>1.4<br>28.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.3<br>0.4<br>10.9<br>11.8<br>7<br>11.4<br>0.4<br>10.9                                                                                                                           | 5.2<br>0.3<br>4.7<br>5.7<br>7<br>4.9<br>0.4<br>4.3                                                                                                        | 28.2<br>0.6<br>27.1<br>29.0<br>7<br>29.3<br>1.0<br>27.3                                                                                                    | 27.1<br>0.8<br>25.4<br>28.0<br>7<br>28.4<br>0.9<br>27.2                                                                                                         | 10.1<br>0.4<br>9.5<br>10.7<br>7<br>10.0<br>0.4<br>9.4                                                                                                                                          | 8.6<br>0.3<br>8.0<br>9.1<br>7<br>8.7<br>0.5<br>8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.2<br>0.6<br>5.4<br>7.3<br>7<br>6.4<br>0.5<br>5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.5<br>0.9<br>24.7<br>27.7<br>7<br>27.9<br>1.0<br>26.6                                                                                                                                  | 9.2<br>0.4<br>8.4<br>9.8<br>7<br>9.2<br>0.6<br>8.3                                                                                                                                        | 0.2<br>6.0<br>6.6<br>7<br>6.3<br>0.3<br>5.8                                                                                                                         | 26.7<br>0.7<br>25.0<br>27.2<br>7<br>27.9<br>1.0<br>26.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.0<br>0.5<br>6.5<br>7.9<br>7<br>7.3<br>0.4<br>6.7                                                                                                                  | 4.1<br>0.2<br>3.8<br>4.4<br>7<br>3.9<br>0.2<br>3.5                                                                                                        | 10.8<br>0.3<br>10.4<br>11.1<br>7<br>10.9<br>0.4<br>10.3                                                                                                      | 6.1<br>0.2<br>5.8<br>6.5<br>7<br>5.8<br>0.4<br>5.2                                                                                       | 4.00<br>0.15<br>3.83<br>4.22<br>7<br>4.09<br>0.12<br>3.96                                                                                                                | 5.36<br>0.14<br>5.16<br>5.54<br>6<br>5.39<br>0.14<br>5.16                                                                                                                                                           | 4.43<br>0.09<br>4.35<br>4.60<br>6<br>4.41<br>0.08<br>4.25                                                                                                                     |
| °°°                                                                                     | $\frac{\pm SD}{Min}$ $\frac{Max}{n=}$ $\frac{X}{\pm SD}$ $\frac{Min}{Max}$                                                                                                                                                                                                                                                                                                                                                                   | 4.4<br>0.3<br>4.0<br>4.8<br>7<br>5.3<br>0.8<br>4.3<br>6.5                                                                                                                                                                                 | 43.9<br>1.3<br>42.4<br>46.6<br>7<br>45.9<br>1.7<br>41.2<br>48.7<br>12                                                                                                                          | 27.8<br>1.5<br>25.6<br>29.6<br>7<br>30.0<br>1.4<br>28.1<br>32.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.3<br>0.4<br>10.9<br>11.8<br>7<br>11.4<br>0.4<br>10.9<br>12.0                                                                                                                   | 5.2<br>0.3<br>4.7<br>5.7<br>7<br>4.9<br>0.4<br>4.3<br>5.4                                                                                                 | 28.2<br>0.6<br>27.1<br>29.0<br>7<br>29.3<br>1.0<br>27.3<br>31.1                                                                                            | 27.1<br>0.8<br>25.4<br>28.0<br>7<br>28.4<br>0.9<br>27.2<br>29.6                                                                                                 | 10.1<br>0.4<br>9.5<br>10.7<br>7<br>10.0<br>0.4<br>9.4<br>10.7                                                                                                                                  | 8.6<br>0.3<br>8.0<br>9.1<br>7<br>8.7<br>0.5<br>8.2<br>9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.2<br>0.6<br>5.4<br>7.3<br>7<br>6.4<br>0.5<br>5.5<br>7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26.5<br>0.9<br>24.7<br>27.7<br>7<br>27.9<br>1.0<br>26.6<br>29.5                                                                                                                          | 9.2<br>0.4<br>8.4<br>9.8<br>7<br>9.2<br>0.6<br>8.3<br>10.1                                                                                                                                | 0.3<br>0.2<br>6.0<br>6.6<br>7<br>6.3<br>0.3<br>5.8<br>6.9                                                                                                           | 26.7<br>0.7<br>25.0<br>27.2<br>7<br>27.9<br>1.0<br>26.5<br>29.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.0<br>0.5<br>6.5<br>7.9<br>7<br>7.3<br>0.4<br>6.7<br>8.1                                                                                                           | 4.1<br>0.2<br>3.8<br>4.4<br>7<br>3.9<br>0.2<br>3.5<br>4.3                                                                                                 | 10.8<br>0.3<br>10.4<br>11.1<br>7<br>10.9<br>0.4<br>10.3<br>11.6                                                                                              | 6.1<br>0.2<br>5.8<br>6.5<br>7<br>5.8<br>0.4<br>5.2<br>6.3                                                                                | 4.00<br>0.15<br>3.83<br>4.22<br>7<br>4.09<br>0.12<br>3.96<br>4.37                                                                                                        | 5.36<br>0.14<br>5.16<br>5.54<br>6<br>5.39<br>0.14<br>5.16<br>5.67                                                                                                                                                   | 4.43<br>0.09<br>4.35<br>4.60<br>6<br>4.41<br>0.08<br>4.25<br>4.54                                                                                                             |
| \$<br>\$<br>\$<br>\$                                                                    | x<br>± SD<br>Min<br>Max<br>n=<br>X<br>± SD<br>Min<br>Max<br>n=                                                                                                                                                                                                                                                                                                                                                                               | 4.4<br>0.3<br>4.0<br>4.8<br>7<br>5.3<br>0.8<br>4.3<br>6.5<br>13                                                                                                                                                                           | 43.9<br>1.3<br>42.4<br>46.6<br>7<br>45.9<br>1.7<br>41.2<br>48.7<br>13                                                                                                                          | 27.8<br>1.5<br>25.6<br>29.6<br>7<br>30.0<br>1.4<br>28.1<br>32.6<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.3<br>0.4<br>10.9<br>11.8<br>7<br>11.4<br>0.4<br>10.9<br>12.0<br>12                                                                                                             | 5.2<br>0.3<br>4.7<br>5.7<br>7<br>4.9<br>0.4<br>4.3<br>5.4<br>13                                                                                           | 28.2<br>0.6<br>27.1<br>29.0<br>7<br>29.3<br>1.0<br>27.3<br>31.1<br>13                                                                                      | 27.1<br>0.8<br>25.4<br>28.0<br>7<br>28.4<br>0.9<br>27.2<br>29.6<br>13                                                                                           | 10.1<br>0.4<br>9.5<br>10.7<br>7<br>10.0<br>0.4<br>9.4<br>10.7<br>13                                                                                                                            | 8.6<br>0.3<br>8.0<br>9.1<br>7<br>8.7<br>0.5<br>8.2<br>9.9<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.2<br>0.6<br>5.4<br>7.3<br>7<br>6.4<br>0.5<br>5.5<br>7.2<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26.5<br>0.9<br>24.7<br>27.7<br>7<br>27.9<br>1.0<br>26.6<br>29.5<br>13                                                                                                                    | 9.2<br>0.4<br>8.4<br>9.8<br>7<br>9.2<br>0.6<br>8.3<br>10.1<br>13                                                                                                                          | 0.3<br>0.2<br>6.0<br>6.6<br>7<br>6.3<br>0.3<br>5.8<br>6.9<br>13                                                                                                     | 26.7<br>0.7<br>25.0<br>27.2<br>7<br>27.9<br>1.0<br>26.5<br>29.3<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.0<br>0.5<br>6.5<br>7.9<br>7<br>7.3<br>0.4<br>6.7<br>8.1<br>13                                                                                                     | 4.1<br>0.2<br>3.8<br>4.4<br>7<br>3.9<br>0.2<br>3.5<br>4.3<br>13                                                                                           | 10.8<br>0.3<br>10.4<br>11.1<br>7<br>10.9<br>0.4<br>10.3<br>11.6<br>13                                                                                        | 6.1<br>0.2<br>5.8<br>6.5<br>7<br>5.8<br>0.4<br>5.2<br>6.3<br>13                                                                          | 4.00<br>0.15<br>3.83<br>4.22<br>7<br>4.09<br>0.12<br>3.96<br>4.37<br>13                                                                                                  | 5.36<br>0.14<br>5.16<br>5.54<br>6<br>5.39<br>0.14<br>5.16<br>5.67<br>13                                                                                                                                             | 4.43<br>0.09<br>4.35<br>4.60<br>6<br>4.41<br>0.08<br>4.25<br>4.54<br>13                                                                                                       |
| \$<br>\$<br>\$<br>\$<br>\$<br>\$                                                        | x<br>± SD<br>Min<br>Max<br>n=<br>X<br>± SD<br>Min<br>Max<br>n=                                                                                                                                                                                                                                                                                                                                                                               | 4.4<br>0.3<br>4.0<br>4.8<br>7<br>5.3<br>0.8<br>4.3<br>6.5<br>13                                                                                                                                                                           | 43.9<br>1.3<br>42.4<br>46.6<br>7<br>45.9<br>1.7<br>41.2<br>48.7<br>13<br>TL                                                                                                                    | 27.8<br>1.5<br>25.6<br>29.6<br>7<br>30.0<br>1.4<br>28.1<br>32.6<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.3<br>0.4<br>10.9<br>11.8<br>7<br>11.4<br>0.4<br>10.9<br>12.0<br>12                                                                                                             | 5.2<br>0.3<br>4.7<br>5.7<br>7<br>4.9<br>0.4<br>4.3<br>5.4<br>13                                                                                           | 28.2<br>0.6<br>27.1<br>29.0<br>7<br>29.3<br>1.0<br>27.3<br>31.1<br>13                                                                                      | 27.1<br>0.8<br>25.4<br>28.0<br>7<br>28.4<br>0.9<br>27.2<br>29.6<br>13                                                                                           | 10.1<br>0.4<br>9.5<br>10.7<br>7<br>10.0<br>0.4<br>9.4<br>10.7<br>13<br><i>N</i>                                                                                                                | 8.6<br>0.3<br>8.0<br>9.1<br>7<br>8.7<br>0.5<br>8.2<br>9.9<br>13<br>Vycticein<br>3Pb2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.2<br>0.6<br>5.4<br>7.3<br>7<br>6.4<br>0.5<br>5.5<br>7.2<br>13<br>mops schu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.5<br>0.9<br>24.7<br>27.7<br>7<br>27.9<br>1.0<br>26.6<br>29.5<br>13<br><i>lieffenii</i>                                                                                                | 9.2<br>0.4<br>8.4<br>9.8<br>7<br>9.2<br>0.6<br>8.3<br>10.1<br>13                                                                                                                          | 0.3<br>0.2<br>6.0<br>6.6<br>7<br>6.3<br>0.3<br>5.8<br>6.9<br>13                                                                                                     | 26.7<br>0.7<br>25.0<br>27.2<br>7<br>27.9<br>1.0<br>26.5<br>29.3<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.0<br>0.5<br>6.5<br>7.9<br>7<br>7.3<br>0.4<br>6.7<br>8.1<br>13                                                                                                     | 4.1<br>0.2<br>3.8<br>4.4<br>7<br>3.9<br>0.2<br>3.5<br>4.3<br>13                                                                                           | 10.8<br>0.3<br>10.4<br>11.1<br>7<br>10.9<br>0.4<br>10.3<br>11.6<br>13                                                                                        | 6.1<br>0.2<br>5.8<br>6.5<br>7<br>5.8<br>0.4<br>5.2<br>6.3<br>13                                                                          | 4.00<br>0.15<br>3.83<br>4.22<br>7<br>4.09<br>0.12<br>3.96<br>4.37<br>13                                                                                                  | 5.36<br>0.14<br>5.16<br>5.54<br>6<br>5.39<br>0.14<br>5.16<br>5.67<br>13                                                                                                                                             | 4.43<br>0.09<br>4.35<br>4.60<br>6<br>4.41<br>0.08<br>4.25<br>4.54<br>13                                                                                                       |
|                                                                                         | x<br>± SD<br>Min<br>Max<br>n=<br>X<br>± SD<br>Min<br>Max<br>n=                                                                                                                                                                                                                                                                                                                                                                               | 4.4<br>0.3<br>4.0<br>4.8<br>7<br>5.3<br>0.8<br>4.3<br>6.5<br>13<br>BM                                                                                                                                                                     | 43.9<br>1.3<br>42.4<br>46.6<br>7<br>45.9<br>1.7<br>41.2<br>48.7<br>13<br>TL<br>44.1                                                                                                            | 27.8<br>1.5<br>25.6<br>29.6<br>7<br>30.0<br>1.4<br>28.1<br>32.6<br>13<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E<br>11.3<br>0.4<br>10.9<br>11.8<br>7<br>11.4<br>0.4<br>10.9<br>12.0<br>12<br>E<br>E                                                                                              | 5.2<br>0.3<br>4.7<br>5.7<br>7<br>4.9<br>0.4<br>4.3<br>5.4<br>13<br>TR<br>4.7                                                                              | 28.2<br>0.6<br>27.1<br>29.0<br>7<br>29.3<br>1.0<br>27.3<br>31.1<br>13<br>FA                                                                                | 27.1<br>0.8<br>25.4<br>28.0<br>7<br>28.4<br>0.9<br>27.2<br>29.6<br>13<br>3Met                                                                                   | 10.1<br>0.4<br>9.5<br>10.7<br>7<br>10.0<br>0.4<br>9.4<br>10.7<br>13<br><u>7</u><br><u>3Ph1</u><br>11.6                                                                                         | 8.6<br>0.3<br>8.0<br>9.1<br>7<br>8.7<br>0.5<br>8.2<br>9.9<br>13<br>Nycticein<br>3Ph2<br>9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.2<br>0.6<br>5.4<br>7.3<br>7<br>6.4<br>0.5<br>5.5<br>7.2<br>13<br><b>tops schi</b><br>3Ph3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26.5<br>0.9<br>24.7<br>27.7<br>7<br>27.9<br>1.0<br>26.6<br>29.5<br>13<br><i>lieffenii</i><br>4Met                                                                                        | 9.2<br>0.4<br>8.4<br>9.8<br>7<br>9.2<br>0.6<br>8.3<br>10.1<br>13<br>4Ph1                                                                                                                  | 0.3<br>0.2<br>6.0<br>6.6<br>7<br>6.3<br>0.3<br>5.8<br>6.9<br>13<br>4Ph2<br>6.5                                                                                      | 26.7<br>0.7<br>25.0<br>27.2<br>7<br>27.9<br>1.0<br>26.5<br>29.3<br>13<br>5Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.0<br>0.5<br>6.5<br>7.9<br>7<br>7.3<br>0.4<br>6.7<br>8.1<br>13<br>5Ph1<br>7.5                                                                                      | 4.1<br>0.2<br>3.8<br>4.4<br>7<br>3.9<br>0.2<br>3.5<br>4.3<br>13<br>5Ph2<br>4.5                                                                            | 10.8<br>0.3<br>10.4<br>11.1<br>7<br>10.9<br>0.4<br>10.3<br>11.6<br>13<br>TB                                                                                  | 6.1<br>0.2<br>5.8<br>6.5<br>7<br>5.8<br>0.4<br>5.2<br>6.3<br>13<br>HF                                                                    | 4.00<br>0.15<br>3.83<br>4.22<br>7<br>4.09<br>0.12<br>3.96<br>4.37<br>13<br><u>C-C</u><br>2.94                                                                            | 5.36<br>0.14<br>5.16<br>5.54<br>6<br>5.39<br>0.14<br>5.16<br>5.67<br>13<br><u>M<sup>3</sup>-M<sup>3</sup></u>                                                                                                       | 4.43<br>0.09<br>4.35<br>4.60<br>6<br>4.41<br>0.08<br>4.25<br>4.54<br>13<br>C-M <sup>3</sup>                                                                                   |
| රීරි<br>♀♀<br><u>Sex</u><br>රීරී                                                        | $\begin{array}{c} x \\ \pm \text{SD} \\ \text{Min} \\ \text{Max} \\ n= \\ \\ x \\ \pm \text{SD} \\ \\ \text{Min} \\ \text{Max} \\ n= \\ \\ \\ \\ x \\ \pm \text{SD} \\ \end{array}$                                                                                                                                                                                                                                                          | 4.4<br>0.3<br>4.0<br>4.8<br>7<br>5.3<br>0.8<br>4.3<br>6.5<br>13<br>BM<br>5.1<br>0.4                                                                                                                                                       | 43.9<br>1.3<br>42.4<br>46.6<br>7<br>45.9<br>1.7<br>41.2<br>48.7<br>13<br>TL<br>44.1<br>1.8                                                                                                     | 27.8<br>1.5<br>25.6<br>29.6<br>7<br>30.0<br>1.4<br>28.1<br>32.6<br>13<br>T<br>30.9<br>2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.3<br>0.4<br>10.9<br>11.8<br>7<br>11.4<br>0.4<br>10.9<br>12.0<br>12<br>E<br>11.3<br>0.5                                                                                         | 5.2<br>0.3<br>4.7<br>5.7<br>7<br>4.9<br>0.4<br>4.3<br>5.4<br>13<br>TR<br>4.7<br>0.3                                                                       | 28.2<br>0.6<br>27.1<br>29.0<br>7<br>29.3<br>1.0<br>27.3<br>31.1<br>13<br>FA<br>30.8<br>1.1                                                                 | 27.1<br>0.8<br>25.4<br>28.0<br>7<br>28.4<br>0.9<br>27.2<br>29.6<br>13<br>3Met<br>30.5<br>1.3                                                                    | 10.1<br>0.4<br>9.5<br>10.7<br>7<br>10.0<br>0.4<br>9.4<br>10.7<br>13<br>M<br>3Ph1<br>11.6<br>0.7                                                                                                | 8.6<br>0.3<br>8.0<br>9.1<br>7<br>8.7<br>0.5<br>8.2<br>9.9<br>13<br><b>Vycticein</b><br>3Ph2<br>9.4<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.2<br>0.6<br>5.4<br>7.3<br>7<br>6.4<br>0.5<br>5.5<br>7.2<br>13<br>00ps schut<br>3Ph3<br>6.3<br>0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.5<br>0.9<br>24.7<br>27.7<br>7<br>27.9<br>1.0<br>26.6<br>29.5<br>13<br><i>lieffenii</i><br>4Met<br>30.1<br>1.0                                                                         | 9.2<br>0.4<br>8.4<br>9.8<br>7<br>9.2<br>0.6<br>8.3<br>10.1<br>13<br>4Ph1<br>10.2<br>0.6                                                                                                   | 0.3<br>0.2<br>6.0<br>6.6<br>7<br>6.3<br>0.3<br>5.8<br>6.9<br>13<br>4Ph2<br>6.5<br>0.5                                                                               | 26.7<br>0.7<br>25.0<br>27.2<br>7<br>27.9<br>1.0<br>26.5<br>29.3<br>13<br>5Met<br>30.0<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.0<br>0.5<br>6.5<br>7.9<br>7<br>7.3<br>0.4<br>6.7<br>8.1<br>13<br>5Ph1<br>7.5<br>0.5                                                                               | 4.1<br>0.2<br>3.8<br>4.4<br>7<br>3.9<br>0.2<br>3.5<br>4.3<br>13<br>5Ph2<br>4.5<br>0.3                                                                     | 10.8<br>0.3<br>10.4<br>11.1<br>7<br>0.4<br>10.9<br>0.4<br>10.3<br>11.6<br>13<br>TB<br>12.2<br>0.5                                                            | 6.1<br>0.2<br>5.8<br>6.5<br>7<br>5.8<br>0.4<br>5.2<br>6.3<br>13<br>HF<br>6.3<br>0.4                                                      | 4.00<br>0.15<br>3.83<br>4.22<br>7<br>4.09<br>0.12<br>3.96<br>4.37<br>13<br>                                                                                              | 5.36<br>0.14<br>5.16<br>5.54<br>6<br>5.39<br>0.14<br>5.16<br>5.67<br>13<br><u>M<sup>3</sup>-M<sup>3</sup></u><br>5.43<br>0.15                                                                                       | 4.43<br>0.09<br>4.35<br>4.60<br>6<br>4.41<br>0.08<br>4.25<br>4.54<br>13<br><u>C-M<sup>3</sup></u><br>4.36<br>0.12                                                             |
| රී රී<br>♀♀<br><u>Sex</u><br>රී රී                                                      | x<br>± SD<br>Min<br>Max<br>n=<br>X<br>± SD<br>Min<br>Max<br>n=<br>X<br>± SD<br>Min                                                                                                                                                                                                                                                                                                                                                           | 4.4<br>0.3<br>4.0<br>4.8<br>7<br>5.3<br>0.8<br>4.3<br>6.5<br>13<br>BM<br>5.1<br>0.4<br>4.5                                                                                                                                                | 43.9<br>1.3<br>42.4<br>46.6<br>7<br>45.9<br>1.7<br>41.2<br>48.7<br>13<br>TL<br>44.1<br>1.8<br>41.9                                                                                             | 27.8<br>1.5<br>25.6<br>29.6<br>7<br>30.0<br>1.4<br>28.1<br>32.6<br>13<br>T<br>30.9<br>2.5<br>26.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.3<br>0.4<br>10.9<br>11.8<br>7<br>11.4<br>0.4<br>10.9<br>12.0<br>12<br>E<br>E<br>11.3<br>0.5<br>10.4                                                                            | 5.2<br>0.3<br>4.7<br>5.7<br>7<br>4.9<br>0.4<br>4.3<br>5.4<br>13<br>TR<br>4.7<br>0.3<br>3.9                                                                | 28.2<br>0.6<br>27.1<br>29.0<br>7<br>29.3<br>1.0<br>27.3<br>31.1<br>13<br>FA<br>30.8<br>1.1<br>29.3                                                         | 27.1<br>0.8<br>25.4<br>28.0<br>7<br>28.4<br>0.9<br>27.2<br>29.6<br>13<br>3Met<br>30.5<br>1.3<br>27.8                                                            | 10.1<br>0.4<br>9.5<br>10.7<br>7<br>10.0<br>0.4<br>9.4<br>10.7<br>13<br>7<br>3Ph1<br>11.6<br>0.7<br>10.6                                                                                        | 8.6<br>0.3<br>8.0<br>9.1<br>7<br>8.7<br>0.5<br>8.2<br>9.9<br>13<br>Vycticein<br>3Ph2<br>9.4<br>0.7<br>8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.2<br>0.6<br>5.4<br>7.3<br>7<br>6.4<br>0.5<br>5.5<br>7.2<br>13<br><b>3</b><br><b>bops schu</b><br>3 <b>Ph</b> 3<br>6.3<br>0.8<br>5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26.5<br>0.9<br>24.7<br>27.7<br>7<br>27.9<br>1.0<br>26.6<br>29.5<br>13<br><i>Nieffenii</i><br>4Met<br>30.1<br>1.0<br>28.8                                                                 | 9.2<br>0.4<br>8.4<br>9.8<br>7<br>9.2<br>0.6<br>8.3<br>10.1<br>13<br>4Ph1<br>10.2<br>0.6<br>9.1                                                                                            | 0.3<br>0.2<br>6.0<br>6.6<br>7<br>6.3<br>0.3<br>5.8<br>6.9<br>13<br>4Ph2<br>6.5<br>0.5<br>5.7                                                                        | 26.7<br>0.7<br>25.0<br>27.2<br>7<br>27.9<br>1.0<br>26.5<br>29.3<br>13<br>5Met<br>30.0<br>1.1<br>27.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.0<br>0.5<br>6.5<br>7.9<br>7<br>7.3<br>0.4<br>6.7<br>8.1<br>13<br>5Ph1<br>7.5<br>0.5<br>6.7                                                                        | 4.1<br>0.2<br>3.8<br>4.4<br>7<br>3.9<br>0.2<br>3.5<br>4.3<br>13<br>5Ph2<br>4.5<br>0.3<br>4.1                                                              | 10.8<br>0.3<br>10.4<br>11.1<br>7<br>10.9<br>0.4<br>10.3<br>11.6<br>13<br>TB<br>12.2<br>0.5<br>11.4                                                           | 6.1<br>0.2<br>5.8<br>6.5<br>7<br>5.8<br>0.4<br>5.2<br>6.3<br>13<br>HF<br>6.3<br>0.4<br>5.5                                               | 4.00<br>0.15<br>3.83<br>4.22<br>7<br>4.09<br>0.12<br>3.96<br>4.37<br>13<br><u>C-C</u><br>3.94<br>0.14<br>3.73                                                            | 5.36<br>0.14<br>5.16<br>5.54<br>6<br>5.39<br>0.14<br>5.16<br>5.67<br>13<br><u>M<sup>3</sup>-M<sup>3</sup></u><br>5.43<br>0.15<br>5.17                                                                               | 4.43<br>0.09<br>4.35<br>4.60<br>6<br>4.41<br>0.08<br>4.25<br>4.54<br>13<br><u>C-M<sup>3</sup></u><br>4.36<br>0.12<br>4.18                                                     |
| රී රී<br>♀♀<br><u>Sex</u><br>රී රී                                                      | $\frac{1}{2} \frac{SD}{Min}$ $\frac{Max}{m=}$ $\frac{X}{\pm SD}$ $\frac{Min}{Max}$ $\frac{X}{\pm SD}$ $\frac{X}{\pm SD}$ $\frac{X}{Min}$ $Max$                                                                                                                                                                                                                                                                                               | 4.4<br>0.3<br>4.0<br>4.8<br>7<br>5.3<br>0.8<br>4.3<br>6.5<br>13<br>BM<br>5.1<br>0.4<br>4.5<br>6.0                                                                                                                                         | 43.9<br>1.3<br>42.4<br>46.6<br>7<br>45.9<br>1.7<br>41.2<br>48.7<br>13<br>TL<br>44.1<br>1.8<br>41.9<br>47.2                                                                                     | 27.8<br>1.5<br>25.6<br>29.6<br>7<br>30.0<br>1.4<br>28.1<br>32.6<br>13<br>T<br>T<br>30.9<br>2.5<br>26.4<br>35.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.3<br>0.4<br>10.9<br>11.8<br>7<br>11.4<br>0.4<br>10.9<br>12.0<br>12<br>E<br>E<br>11.3<br>0.5<br>10.4<br>12.1                                                                    | 5.2<br>0.3<br>4.7<br>5.7<br>7<br>4.9<br>0.4<br>4.3<br>5.4<br>13<br>TR<br>4.7<br>0.3<br>3.9<br>5.1                                                         | 28.2<br>0.6<br>27.1<br>29.0<br>7<br>29.3<br>1.0<br>27.3<br>31.1<br>13<br>FA<br>30.8<br>1.1<br>29.3<br>32.5                                                 | 27.1<br>0.8<br>25.4<br>28.0<br>7<br>28.4<br>0.9<br>27.2<br>29.6<br>13<br>3Met<br>30.5<br>1.3<br>27.8<br>32.6                                                    | 10.1<br>0.4<br>9.5<br>10.7<br>7<br>10.0<br>0.4<br>9.4<br>10.7<br>13<br>M<br>3Ph1<br>11.6<br>0.7<br>10.6<br>12.9                                                                                | 8.6<br>0.3<br>8.0<br>9.1<br>7<br>8.7<br>0.5<br>8.2<br>9.9<br>13<br><u>Vyeticein</u><br><u>3Ph2</u><br>9.4<br>0.7<br>8.4<br>10.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.2<br>0.6<br>5.4<br>7.3<br>7<br>6.4<br>0.5<br>5.5<br>7.2<br>13<br>13<br>10ps schu<br>3Ph3<br>6.3<br>0.8<br>5.1<br>7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.5<br>0.9<br>24.7<br>27.7<br>7<br>27.9<br>1.0<br>26.6<br>29.5<br>13<br><i>lieffenii</i><br>4Met<br>30.1<br>1.0<br>28.8<br>31.8                                                         | 9.2<br>0.4<br>8.4<br>9.8<br>7<br>9.2<br>0.6<br>8.3<br>10.1<br>13<br>4Ph1<br>10.2<br>0.6<br>9.1<br>11.1                                                                                    | 0.3<br>0.2<br>6.0<br>6.6<br>7<br>6.3<br>0.3<br>5.8<br>6.9<br>13<br>4Ph2<br>6.5<br>0.5<br>5.7<br>7.4                                                                 | 26.7<br>0.7<br>25.0<br>27.2<br>7<br>27.9<br>1.0<br>26.5<br>29.3<br>13<br>5Met<br>30.0<br>1.1<br>27.7<br>31.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.0<br>0.5<br>6.5<br>7.9<br>7<br>7.3<br>0.4<br>6.7<br>8.1<br>13<br>5Ph1<br>7.5<br>0.5<br>6.7<br>8.6                                                                 | 4.1<br>0.2<br>3.8<br>4.4<br>7<br>3.9<br>0.2<br>3.5<br>4.3<br>13<br>5Ph2<br>4.5<br>0.3<br>4.1<br>5.2                                                       | 10.8<br>0.3<br>10.4<br>11.1<br>7<br>10.9<br>0.4<br>10.3<br>11.6<br>13<br>TB<br>12.2<br>0.5<br>11.4<br>12.9                                                   | 6.1<br>0.2<br>5.8<br>6.5<br>7<br>5.8<br>0.4<br>5.2<br>6.3<br>13<br>HF<br>6.3<br>0.4<br>5.5<br>7.3                                        | 4.00<br>0.15<br>3.83<br>4.22<br>7<br>4.09<br>0.12<br>3.96<br>4.37<br>13<br><u>C-C</u><br>3.94<br>0.14<br>3.73<br>4.15                                                    | 5.36<br>0.14<br>5.16<br>5.54<br>6<br>5.39<br>0.14<br>5.16<br>5.67<br>13<br><u>M<sup>3</sup>-M<sup>3</sup></u><br>5.43<br>0.15<br>5.17<br>5.61                                                                       | 4.43<br>0.09<br>4.35<br>4.60<br>6<br>4.41<br>0.08<br>4.25<br>4.54<br>13<br>C-M <sup>3</sup><br>4.36<br>0.12<br>4.18<br>4.60                                                   |
| රී රී<br>♀♀<br><u>Sex</u><br>රී රී                                                      | $\frac{1}{2} \frac{SD}{Min}$ $\frac{Max}{n=}$ $\frac{X}{\pm SD}$ $\frac{Min}{Max}$ $\frac{X}{\pm SD}$ $\frac{X}{\pm SD}$ $\frac{X}{Min}$ $Max$ $n=$                                                                                                                                                                                                                                                                                          | 4.4<br>0.3<br>4.0<br>4.8<br>7<br>5.3<br>0.8<br>4.3<br>6.5<br>13<br><b>BM</b><br>5.1<br>0.4<br>4.5<br>6.0<br>11                                                                                                                            | 43.9<br>1.3<br>42.4<br>46.6<br>7<br>45.9<br>1.7<br>41.2<br>48.7<br>13<br>TL<br>44.1<br>1.8<br>41.9<br>47.2<br>11                                                                               | 27.8<br>1.5<br>25.6<br>7<br>30.0<br>1.4<br>28.1<br>32.6<br>13<br>T<br>T<br>30.9<br>2.5<br>26.4<br>35.4<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.3<br>0.4<br>10.9<br>11.8<br>7<br>11.4<br>0.4<br>10.9<br>12.0<br>12<br>E<br>E<br>11.3<br>0.5<br>10.4<br>12.1<br>11                                                              | 5.2<br>0.3<br>4.7<br>5.7<br>7<br>4.9<br>0.4<br>4.3<br>5.4<br>13<br>TR<br>4.7<br>0.3<br>3.9<br>5.1<br>11                                                   | 28.2<br>0.6<br>27.1<br>29.0<br>7<br>29.3<br>1.0<br>27.3<br>31.1<br>13<br>FA<br>30.8<br>1.1<br>29.3<br>32.5<br>11                                           | 27.1<br>0.8<br>25.4<br>28.0<br>7<br>28.4<br>0.9<br>27.2<br>29.6<br>13<br>3Met<br>30.5<br>1.3<br>27.8<br>32.6<br>11                                              | 10.1<br>0.4<br>9.5<br>10.7<br>7<br>10.0<br>0.4<br>9.4<br>10.7<br>13<br>7<br>3Ph1<br>11.6<br>0.7<br>10.6<br>12.9<br>11                                                                          | 8.6<br>0.3<br>8.0<br>9.1<br>7<br>8.7<br>0.5<br>8.2<br>9.9<br>13<br><b>Vycticein</b><br><u>3Ph2</u><br>9.4<br>0.7<br>8.4<br>10.9<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.2<br>0.6<br>5.4<br>7.3<br>7<br>6.4<br>0.5<br>5.5<br>7.2<br>13<br>0.8<br>5.1<br>7.7<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26.5<br>0.9<br>24.7<br>27.7<br>7<br>27.9<br>1.0<br>26.6<br>29.5<br>13<br><i>dieffenii</i><br>4Met<br>30.1<br>1.0<br>28.8<br>31.8<br>11                                                   | 9.2<br>0.4<br>8.4<br>9.8<br>7<br>9.2<br>0.6<br>8.3<br>10.1<br>13<br>4Ph1<br>10.2<br>0.6<br>9.1<br>11.1<br>11                                                                              | 0.3<br>0.2<br>6.0<br>6.6<br>7<br>6.3<br>0.3<br>5.8<br>6.9<br>13<br>4Ph2<br>6.5<br>0.5<br>5.7<br>7.4<br>11                                                           | 26.7<br>0.7<br>25.0<br>27.2<br>7<br>27.9<br>1.0<br>26.5<br>29.3<br>13<br>5Met<br>30.0<br>1.1<br>27.7<br>31.7<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.0<br>0.5<br>6.5<br>7.9<br>7<br>7.3<br>0.4<br>6.7<br>8.1<br>13<br>5Ph1<br>7.5<br>0.5<br>6.7<br>8.6<br>11                                                           | 4.1<br>0.2<br>3.8<br>4.4<br>7<br>3.9<br>0.2<br>3.5<br>4.3<br>13<br>5Ph2<br>4.5<br>0.3<br>4.1<br>5.2<br>11                                                 | 10.8<br>0.3<br>10.4<br>11.1<br>7<br>10.9<br>0.4<br>10.3<br>11.6<br>13<br>11.6<br>13<br>12.2<br>0.5<br>11.4<br>12.9<br>11                                     | 6.1<br>0.2<br>5.8<br>6.5<br>7<br>5.8<br>0.4<br>5.2<br>6.3<br>13<br>HF<br>6.3<br>0.4<br>5.5<br>7.3<br>11                                  | 4.00<br>0.15<br>3.83<br>4.22<br>7<br>4.09<br>0.12<br>3.96<br>4.37<br>13<br><br><br>3.94<br>0.14<br>3.73<br>4.15<br>11                                                    | 5.36<br>0.14<br>5.16<br>5.54<br>6<br>5.39<br>0.14<br>5.16<br>5.67<br>13<br>                                                                                                                                         | 4.43<br>0.09<br>4.35<br>4.60<br>6<br>4.41<br>0.08<br>4.25<br>4.54<br>13<br>C-M <sup>3</sup><br>4.36<br>0.12<br>4.18<br>4.60<br>11                                             |
| රී රී<br>♀♀<br><b>Sex</b><br>රී රී                                                      | $\begin{array}{c} x \\ \pm \text{ SD} \\ \text{Min} \\ \text{Max} \\ n^{=} \\ \hline \\ x \\ \pm \text{ SD} \\ \text{Min} \\ \text{Max} \\ n^{=} \\ \hline \\ \hline \\ \text{Min} \\ \text{Max} \\ n^{=} \\ \hline \\ \text{X} \\ \end{array}$                                                                                                                                                                                              | 4.4<br>0.3<br>4.0<br>4.8<br>7<br>5.3<br>0.8<br>4.3<br>6.5<br>13<br>BM<br>5.1<br>0.4<br>4.5<br>6.0<br>11<br>5.7                                                                                                                            | 43.9<br>1.3<br>42.4<br>46.6<br>7<br>45.9<br>1.7<br>41.2<br>48.7<br>13<br>TL<br>44.1<br>1.8<br>41.9<br>47.2<br>11<br>46.3                                                                       | 27.8<br>1.5<br>25.6<br>7<br>30.0<br>1.4<br>28.1<br>32.6<br>13<br>T<br>T<br>30.9<br>2.5<br>26.4<br>35.4<br>11<br>33.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.3<br>0.4<br>10.9<br>11.8<br>7<br>11.4<br>0.4<br>10.9<br>12.0<br>12<br>12.0<br>12<br>E<br>E<br>11.3<br>0.5<br>10.4<br>12.1<br>11.1<br>11.5                                      | 5.2<br>0.3<br>4.7<br>5.7<br>7<br>4.9<br>0.4<br>4.3<br>5.4<br>13<br>TR<br>4.7<br>0.3<br>3.9<br>5.1<br>11<br>4.6                                            | 28.2<br>0.6<br>27.1<br>29.0<br>7<br>29.3<br>1.0<br>27.3<br>31.1<br>13<br><b>FA</b><br>30.8<br>1.1<br>29.3<br>32.5<br>11<br>31.9                            | 27.1<br>0.8<br>25.4<br>28.0<br>7<br>28.4<br>0.9<br>27.2<br>29.6<br>13<br>30.5<br>1.3<br>27.8<br>32.6<br>11<br>31.4                                              | 10.1<br>0.4<br>9.5<br>10.7<br>7<br>10.0<br>0.4<br>9.4<br>10.7<br>13<br>7<br>3PhI<br>11.6<br>0.7<br>10.6<br>12.9<br>11<br>12.0                                                                  | 8.6<br>0.3<br>8.0<br>9.1<br>7<br>8.7<br>0.5<br>8.2<br>9.9<br><u>13</u><br><u>3Ph2</u><br>9.4<br>0.7<br>8.4<br>10.9<br><u>11</u><br>9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.2<br>0.6<br>5.4<br>7.3<br>7<br>6.4<br>0.5<br>5.5<br>7.2<br>13<br>0.05<br>5.5<br>7.2<br>13<br>0.8<br>5.1<br>7.7<br>11<br>6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26.5<br>0.9<br>24.7<br>7<br>27.7<br>1.0<br>26.6<br>29.5<br>13<br><b>iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii</b>                                                                              | 9.2<br>0.4<br>8.4<br>9.8<br>7<br>9.2<br>0.6<br>8.3<br>10.1<br>13<br>10.1<br>10.2<br>0.6<br>9.1<br>11.1<br>11.1<br>11.1                                                                    | 0.3<br>0.2<br>6.0<br>6.6<br>7<br>6.3<br>0.3<br>5.8<br>6.9<br>13<br>4Ph2<br>6.5<br>0.5<br>5.7<br>7.4<br>11<br>7.1                                                    | 26.7<br>0.7<br>25.0<br>27.2<br>7<br>27.9<br>1.0<br>26.5<br>29.3<br>13<br>5Met<br>30.0<br>1.1<br>27.7<br>31.7<br>11<br>30.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.0<br>0.5<br>6.5<br>7.9<br>7<br>7.3<br>0.4<br>6.7<br>8.1<br>13<br>5Ph1<br>7.5<br>0.5<br>6.7<br>8.6<br>11<br>8.0                                                    | 4.1<br>0.2<br>3.8<br>4.4<br>7<br>3.9<br>0.2<br>3.5<br>4.3<br>13<br>5 <u>SPh2</u><br>4.5<br>0.3<br>4.1<br>5.2<br>11<br>4.7                                 | 10.8<br>0.3<br>10.4<br>11.1<br>7<br>0.9<br>0.4<br>10.3<br>11.6<br>13<br>11.6<br>13<br>TB<br>12.2<br>0.5<br>11.4<br>12.9<br>11<br>12.8                        | 6.1<br>0.2<br>5.8<br>6.5<br>7<br>5.8<br>0.4<br>5.2<br>6.3<br>13<br>HF<br>6.3<br>0.4<br>5.5<br>7.3<br>11<br>6.6                           | 4.00<br>0.15<br>3.83<br>4.22<br>7<br>4.09<br>0.12<br>3.96<br>4.37<br>13<br>C-C<br>3.94<br>0.14<br>3.73<br>4.15<br>11<br>3.98                                             | $5.36 \\ 0.14 \\ 5.16 \\ 5.54 \\ 6 \\ 5.39 \\ 0.14 \\ 5.16 \\ 5.67 \\ 13 \\ \\ 13 \\ 5.43 \\ 0.15 \\ 5.17 \\ 5.61 \\ 11 \\ 5.48 \\ \end{bmatrix}$                                                                   | 4.43<br>0.09<br>4.35<br>4.60<br>6<br>4.41<br>0.08<br>4.25<br>4.54<br>13<br>C-M <sup>3</sup><br>4.36<br>0.12<br>4.18<br>4.60<br>11<br>4.32                                     |
| ඊඊ<br>♀♀<br><u>Sex</u><br>♂ී                                                            | $\begin{array}{c} x \\ \pm \text{ SD} \\ \text{Min} \\ \text{Max} \\ n= \\ \\ x \\ \pm \text{ SD} \\ \\ \text{Min} \\ \text{Max} \\ n= \\ \\ \\ x \\ \pm \text{ SD} \\ \\ \text{Min} \\ \\ \text{Max} \\ n= \\ \\ x \\ \pm \text{ SD} \end{array}$                                                                                                                                                                                           | 4.4<br>0.3<br>4.0<br>4.8<br>7<br>5.3<br>0.8<br>4.3<br>6.5<br>13<br>BM<br>5.1<br>0.4<br>4.5<br>6.0<br>11<br>5.7<br>0.6                                                                                                                     | 43.9<br>1.3<br>42.4<br>46.6<br>7<br>45.9<br>1.7<br>41.2<br>48.7<br>13<br>TL<br>44.1<br>1.8<br>41.9<br>47.2<br>11<br>46.3<br>1.0                                                                | 27.8<br>1.5<br>25.6<br>7<br>30.0<br>1.4<br>28.1<br>32.6<br>13<br>T<br>30.9<br>2.5<br>26.4<br>35.4<br>11<br>33.3<br>1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.3<br>0.4<br>10.9<br>11.8<br>7<br>11.4<br>0.4<br>10.9<br>12.0<br>12<br>12<br>12<br>E<br>E<br>11.3<br>0.5<br>10.4<br>12.1<br>11.5<br>0.5                                         | 5.2<br>0.3<br>4.7<br>5.7<br>7<br>4.9<br>0.4<br>4.3<br>5.4<br>13<br>5.4<br>13<br>5.4<br>13<br>5.1<br>11<br>11<br>4.6<br>0.3                                | 28.2<br>0.6<br>27.1<br>29.0<br>7<br>29.3<br>1.0<br>27.3<br>31.1<br>13<br>31.1<br>29.3<br>32.5<br>11<br>31.9<br>1.7                                         | 27.1<br>0.8<br>25.4<br>28.0<br>7<br>28.4<br>0.9<br>27.2<br>29.6<br>13<br>30.5<br>1.3<br>27.8<br>32.6<br>11<br>31.4<br>1.8                                       | 10.1<br>0.4<br>9.5<br>10.7<br>7<br>10.0<br>0.4<br>9.4<br>10.7<br>13<br>M<br>3Ph1<br>11.6<br>0.7<br>10.6<br>12.9<br>11<br>12.0<br>0.8                                                           | 8.6<br>0.3<br>8.0<br>9.1<br>7<br>8.7<br>0.5<br>8.2<br>9.9<br>13<br>Vyeticein<br>3Ph2<br>9.4<br>0.7<br>8.4<br>10.9<br>11<br>9.8<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.2<br>0.6<br>5.4<br>7.3<br>7<br>6.4<br>0.5<br>5.5<br>7.2<br>13<br>0.8<br>5.1<br>7.7<br>11<br>6.2<br>0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.5<br>0.9<br>24.7<br>7<br>7<br>27.9<br>1.0<br>26.6<br>29.5<br>13<br><b>iieffenii</b><br>4Met<br>30.1<br>1.0<br>28.8<br>31.8<br>11<br>30.9<br>1.7                                       | 9.2<br>0.4<br>8.4<br>9.8<br>7<br>9.2<br>0.6<br>8.3<br>10.1<br>13<br>10.2<br>0.6<br>9.1<br>11.1<br>11.1<br>10.8<br>0.7                                                                     | 0.3<br>0.2<br>6.0<br>6.6<br>7<br>6.3<br>0.3<br>5.8<br>6.9<br>13<br>4Ph2<br>6.5<br>0.5<br>5.7<br>7.4<br>11<br>7.1<br>0.5                                             | 26.7<br>0.7<br>25.0<br>27.2<br>7<br>27.9<br>1.0<br>26.5<br>29.3<br>13<br>5Met<br>30.0<br>1.1<br>27.7<br>31.7<br>11<br>30.6<br>1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.0<br>0.5<br>6.5<br>7.9<br>7<br>7.3<br>0.4<br>6.7<br>8.1<br>13<br>5Ph1<br>7.5<br>0.5<br>6.7<br>8.6<br>11<br>8.0<br>0.6                                             | 4.1<br>0.2<br>3.8<br>4.4<br>7<br>3.9<br>0.2<br>3.5<br>4.3<br>13<br>5Ph2<br>4.5<br>0.3<br>4.1<br>5.2<br>11<br>4.7<br>0.4                                   | 10.8<br>0.3<br>10.4<br>11.1<br>7<br>0.9<br>0.4<br>10.3<br>11.6<br>13<br>11.6<br>13<br>12.2<br>0.5<br>11.4<br>12.9<br>11<br>12.8<br>0.9                       | 6.1<br>0.2<br>5.8<br>6.5<br>7<br>5.8<br>0.4<br>5.2<br>6.3<br>13<br>0.4<br>5.2<br>6.3<br>0.4<br>5.5<br>7.3<br>11<br>6.6<br>0.1            | 4.00<br>0.15<br>3.83<br>4.22<br>7<br>4.09<br>0.12<br>3.96<br>4.37<br>13<br>C-C<br>3.94<br>0.14<br>3.73<br>4.15<br>11<br>3.98<br>0.15                                     | 5.36<br>0.14<br>5.16<br>5.54<br>6<br>5.39<br>0.14<br>5.16<br>5.39<br>0.14<br>5.16<br>5.43<br>0.15<br>5.17<br>5.61<br>11<br>5.48<br>0.08                                                                             | 4.43<br>0.09<br>4.35<br>4.60<br>6<br>4.41<br>0.08<br>4.25<br>4.54<br>13<br><u>C-M<sup>3</sup></u><br>4.36<br>0.12<br>4.18<br>4.60<br>11<br>4.32<br>0.10                       |
| ්රි<br>♀♀<br><u>Sex</u><br>♂♂                                                           | $\begin{array}{c} x \\ \pm \text{ SD} \\ \text{Min} \\ \text{Max} \\ n= \\ \\ x \\ \pm \text{ SD} \\ \text{Min} \\ \text{Max} \\ n= \\ \\ \\ x \\ \pm \text{ SD} \\ \text{Min} \\ \\ \text{Max} \\ n= \\ \\ x \\ \pm \text{ SD} \\ \text{Min} \end{array}$                                                                                                                                                                                   | 4.4<br>0.3<br>4.0<br>4.8<br>7<br>5.3<br>0.8<br>4.3<br>6.5<br>13<br><b>BM</b><br>5.1<br>0.4<br>4.5<br>6.0<br>11<br>5.7<br>0.6<br>5.0                                                                                                       | 43.9<br>1.3<br>42.4<br>46.6<br>7<br>45.9<br>1.7<br>41.2<br>48.7<br>13<br><b>TL</b><br>44.1<br>1.8<br>41.9<br>47.2<br>11<br>46.3<br>1.0<br>43.8                                                 | 27.8<br>1.5<br>25.6<br>7<br>30.0<br>1.4<br>28.1<br>32.6<br>13<br>32.6<br>13<br>30.9<br>2.5<br>26.4<br>35.4<br>11<br>33.3<br>1.9<br>30.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.3<br>0.4<br>10.9<br>11.8<br>7<br>11.4<br>0.4<br>10.9<br>12.0<br>12<br>12<br>12<br>E<br>E<br>11.3<br>0.5<br>10.4<br>12.1<br>11.5<br>0.5<br>10.4                                 | 5.2<br>0.3<br>4.7<br>5.7<br>7<br>4.9<br>0.4<br>4.3<br>5.4<br>13<br>5.4<br>13<br>5.4<br>13<br>5.1<br>11<br>4.6<br>0.3<br>4.1                               | 28.2<br>0.6<br>27.1<br>29.0<br>7<br>29.3<br>1.0<br>27.3<br>31.1<br>13<br>31.1<br>29.3<br>32.5<br>11<br>31.9<br>1.7<br>29.0                                 | 27.1<br>0.8<br>25.4<br>28.0<br>7<br>28.4<br>0.9<br>27.2<br>29.6<br>13<br>30.5<br>1.3<br>30.5<br>1.3<br>32.6<br>11<br>31.4<br>1.8<br>28.0                        | 10.1<br>0.4<br>9.5<br>10.7<br>7<br>10.0<br>0.4<br>9.4<br>10.7<br>13<br>M<br>3Ph1<br>11.6<br>0.7<br>10.6<br>12.9<br>11<br>12.0<br>0.8<br>10.6                                                   | 8.6<br>0.3<br>8.0<br>9.1<br>7<br>8.7<br>0.5<br>8.2<br>9.9<br>13<br>Vycticein<br>3Ph2<br>9.4<br>0.7<br>8.4<br>10.9<br>11<br>9.8<br>0.7<br>8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.2<br>0.6<br>5.4<br>7.3<br>7<br>6.4<br>0.5<br>5.5<br>7.2<br>13<br>0095 sch<br>3Ph3<br>6.3<br>0.8<br>5.1<br>7.7<br>11<br>6.2<br>0.6<br>5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26.5<br>0.9<br>24.7<br>7<br>7<br>27.9<br>1.0<br>26.6<br>29.5<br>13<br>iieffenii<br>4Met<br>30.1<br>1.0<br>28.8<br>31.8<br>11<br>30.9<br>1.7<br>27.6                                      | 9.2<br>0.4<br>8.4<br>9.8<br>7<br>9.2<br>0.6<br>8.3<br>10.1<br>13<br>10.2<br>0.6<br>9.1<br>11.1<br>11.1<br>10.8<br>0.7<br>9.6                                                              | 0.3<br>0.2<br>6.0<br>6.6<br>7<br>7<br>6.3<br>0.3<br>5.8<br>6.9<br>13<br>4Ph2<br>6.5<br>0.5<br>5.7<br>7.4<br>11<br>7.1<br>0.5<br>6.0                                 | 26.7<br>0.7<br>25.0<br>27.2<br>7<br>27.9<br>1.0<br>26.5<br>29.3<br>13<br>5Met<br>30.0<br>1.1<br>27.7<br>31.7<br>11<br>30.6<br>1.8<br>27.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.0<br>0.5<br>6.5<br>7.9<br>7<br>7.3<br>0.4<br>6.7<br>8.1<br>13<br>5Ph1<br>7.5<br>0.5<br>6.7<br>8.6<br>11<br>8.0<br>0.6<br>6.6                                      | 4.1<br>0.2<br>3.8<br>4.4<br>7<br>3.9<br>0.2<br>3.5<br>4.3<br>13<br>5<br>9Ph2<br>4.5<br>0.3<br>4.1<br>5.2<br>11<br>4.7<br>0.4<br>4.0                       | 10.8<br>0.3<br>10.4<br>11.1<br>7<br>10.9<br>0.4<br>10.3<br>11.6<br>13<br>TB<br>12.2<br>0.5<br>11.4<br>12.9<br>11<br>12.8<br>0.9<br>11.0                      | 6.1<br>0.2<br>5.8<br>6.5<br>7<br>5.8<br>0.4<br>5.2<br>6.3<br>13<br>13<br>HF<br>6.3<br>0.4<br>5.5<br>7.3<br>11<br>6.6<br>0.1<br>6.5       | 4.00<br>0.15<br>3.83<br>4.22<br>7<br>4.09<br>0.12<br>3.96<br>4.37<br>13<br><br><br><br><br><br><br>                                                                      | 5.36<br>0.14<br>5.16<br>5.54<br>6<br>5.39<br>0.14<br>5.16<br>5.43<br>0.15<br>5.43<br>0.15<br>5.43<br>0.15<br>5.17<br>5.61<br>11<br>5.48<br>0.08<br>5.30                                                             | 4,43<br>0,09<br>4,35<br>4,60<br>6<br>4,41<br>0,08<br>4,25<br>4,54<br>13<br><br>4,54<br>4,36<br>0,12<br>4,18<br>4,60<br>11<br>4,32<br>0,10<br>4,18                             |
| °°°<br>♀♀<br><sup>©</sup> °°                                                            | $\begin{array}{c} x \\ \pm \text{ SD} \\ \text{Min} \\ \text{Max} \\ n= \\ \\ x \\ \pm \text{ SD} \\ \text{Min} \\ \text{Max} \\ n= \\ \\ \\ \\ x \\ \pm \text{ SD} \\ \text{Min} \\ \text{Max} \\ n= \\ \\ x \\ \pm \text{ SD} \\ \text{Min} \\ \text{Max} \\ \end{array}$                                                                                                                                                                  | 4.4<br>0.3<br>4.0<br>4.8<br>7<br>5.3<br>0.8<br>4.3<br>6.5<br>13<br>5.1<br>0.4<br>4.5<br>6.0<br>11<br>5.7<br>0.6<br>5.0<br>7.0                                                                                                             | 43.9<br>1.3<br>42.4<br>46.6<br>7<br>45.9<br>1.7<br>41.2<br>48.7<br>13<br>TL<br>44.1<br>1.8<br>41.9<br>47.2<br>11<br>46.3<br>1.0<br>43.8<br>47.3                                                | 27.8<br>1.5<br>25.6<br>29.6<br>7<br>30.0<br>1.4<br>28.1<br>32.6<br>13<br>30.9<br>2.5<br>26.4<br>35.4<br>11<br>33.3<br>1.9<br>30.6<br>35.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.3<br>0.4<br>10.9<br>11.8<br>7<br>11.4<br>0.4<br>10.9<br>12.0<br>12<br>12<br>12<br>E<br>E<br>11.3<br>0.5<br>10.4<br>12.1                                                        | 5.2<br>0.3<br>4.7<br>5.7<br>7<br>4.9<br>0.4<br>4.3<br>5.4<br>13<br>TR<br>4.7<br>0.3<br>3.9<br>5.1<br>11<br>4.6<br>0.3<br>4.1<br>5.0                       | 28.2<br>0.6<br>27.1<br>29.0<br>7<br>29.3<br>1.0<br>27.3<br>31.1<br>13<br>31.1<br>29.3<br>32.5<br>11<br>31.9<br>1.7<br>29.0<br>33.6                         | 27.1<br>0.8<br>25.4<br>28.0<br>7<br>28.4<br>0.9<br>27.2<br>29.6<br>13<br>30.5<br>1.3<br>30.5<br>1.3<br>32.6<br>11<br>31.4<br>1.8<br>28.0<br>34.5                | 10.1<br>0.4<br>9.5<br>10.7<br>7<br>10.0<br>0.4<br>9.4<br>10.7<br>13<br>M<br>3Ph1<br>11.6<br>0.7<br>10.6<br>12.9<br>11<br>12.0<br>0.8<br>10.6<br>13.5                                           | 8.6<br>0.3<br>8.0<br>9.1<br>7<br>8.7<br>0.5<br>8.2<br>9.9<br>13<br>Vycticein<br>3Ph2<br>9.4<br>0.7<br>8.4<br>10.9<br>11<br>9.8<br>0.7<br>8.4<br>10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.2<br>0.6<br>5.4<br>7.3<br>7<br>6.4<br>0.5<br>5.5<br>7.2<br>13<br>0095 sch<br>3Ph3<br>6.3<br>0.8<br>5.1<br>7.7<br>11<br>6.2<br>0.6<br>5.3<br>7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 26.5<br>0.9<br>24.7<br>7<br>27.9<br>1.0<br>26.6<br>29.5<br>13<br><b>iteffenii</b><br>4Met<br>30.1<br>1.0<br>28.8<br>31.8<br>31.8<br>11<br>30.9<br>1.7<br>27.6<br>34.1                    | 9.2<br>0.4<br>8.4<br>9.8<br>7<br>9.2<br>0.6<br>8.3<br>10.1<br>10.2<br>0.6<br>9.1<br>11.1<br>10.2<br>0.6<br>9.1<br>11.1<br>10.8<br>0.7<br>9.6<br>11.7                                      | 0.2<br>0.2<br>6.0<br>6.6<br>7<br>7<br>6.3<br>0.3<br>5.8<br>6.9<br>13<br>4Ph2<br>6.5<br>0.5<br>5.7<br>7.4<br>11<br>7.1<br>0.5<br>6.0<br>8.0                          | 26.7<br>0.7<br>25.0<br>27.2<br>7<br>27.9<br>1.0<br>26.5<br>29.3<br>13<br>5Met<br>30.0<br>1.1<br>27.7<br>31.7<br>11<br>30.6<br>1.8<br>27.0<br>33.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.0<br>0.5<br>6.5<br>7.9<br>7<br>7.3<br>0.4<br>6.7<br>8.1<br>13<br>5Ph1<br>5Ph1<br>5Ph1<br>5.5<br>6.7<br>8.6<br>11<br>8.0<br>0.6<br>6.6<br>8.9                      | 4.1<br>0.2<br>3.8<br>4.4<br>7<br>3.9<br>0.2<br>3.5<br>4.3<br>13<br>5Ph2<br>4.5<br>0.3<br>4.1<br>5.2<br>11<br>4.7<br>0.4<br>4.0<br>5.4                     | 10.8<br>0.3<br>10.4<br>11.1<br>7<br>10.9<br>0.4<br>10.3<br>11.6<br>13<br>TB<br>12.2<br>0.5<br>11.4<br>12.9<br>11.4<br>12.8<br>0.9<br>11.0<br>13.6            | 6.1<br>0.2<br>5.8<br>6.5<br>7<br>5.8<br>0.4<br>5.2<br>6.3<br>13<br>HF<br>6.3<br>0.4<br>5.5<br>7.3<br>11<br>6.6<br>0.1<br>6.5<br>7.0      | 4.00<br>0.15<br>3.83<br>4.22<br>7<br>4.09<br>0.12<br>3.96<br>4.37<br>13<br>0.12<br>3.96<br>4.37<br>13<br>0.14<br>3.73<br>4.15<br>11<br>3.98<br>0.15<br>3.70<br>4.24      | 5.36<br>0.14<br>5.16<br>5.54<br>6<br>5.39<br>0.14<br>5.43<br>0.15<br>5.43<br>0.15<br>5.43<br>0.15<br>5.17<br>5.61<br>11<br>5.48<br>0.08<br>5.30<br>5.58                                                             | 4,43<br>0,09<br>4,35<br>4,60<br>6<br>4,41<br>0,08<br>4,25<br>4,54<br>13<br><br>4,54<br>4,36<br>0,12<br>4,18<br>4,60<br>11<br>4,18<br>4,60<br>11<br>4,18<br>4,49               |
| °°°<br>♀♀<br><sup>©</sup> °°                                                            | $\begin{array}{c} \pm \mathrm{SD} \\ \mathrm{Min} \\ \mathrm{Max} \\ \mathrm{n}= \\ \mathbf{X} \\ \pm \mathrm{SD} \\ \mathrm{Min} \\ \mathrm{Max} \\ \mathrm{n}= \\ \\ \mathbf{X} \\ \pm \mathrm{SD} \\ \mathrm{Min} \\ \mathrm{Max} \\ \mathrm{n}= \\ \\ \mathbf{X} \\ \pm \mathrm{SD} \\ \mathrm{Min} \\ \mathrm{Max} \\ \mathrm{n}= \\ \\ \mathbf{X} \\ \pm \mathrm{SD} \\ \mathrm{Min} \\ \mathrm{Max} \\ \mathrm{n}= \\ \\ \end{array}$ | 4.4<br>0.3<br>4.0<br>4.8<br>7<br>5.3<br>0.8<br>4.3<br>6.5<br>13<br>BM<br>5.1<br>0.4<br>4.5<br>6.0<br>11<br>5.7<br>0.6<br>5.0<br>7.0<br>9                                                                                                  | 43.9<br>1.3<br>42.4<br>46.6<br>7<br>45.9<br>1.7<br>41.2<br>48.7<br>13<br>TL<br>44.1<br>1.8<br>41.9<br>47.2<br>11<br>46.3<br>1.0<br>43.8<br>47.3<br>9                                           | 27.8<br>1.5<br>25.6<br>29.6<br>7<br>30.0<br>1.4<br>28.1<br>32.6<br>13<br>30.9<br>2.5<br>26.4<br>35.4<br>11<br>33.3<br>1.9<br>30.6<br>35.9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11.3<br>0.4<br>10.9<br>11.8<br>7<br>11.4<br>0.4<br>10.9<br>12.0<br>12<br>11.3<br>0.5<br>10.4<br>12.1<br>11.5<br>0.5<br>10.4<br>12.1<br>9                                          | 5.2<br>0.3<br>4.7<br>5.7<br>7<br>4.9<br>0.4<br>4.3<br>5.4<br>13<br>TR<br>4.3<br>3.9<br>5.1<br>11<br>4.6<br>0.3<br>4.1<br>5.0<br>9                         | 28.2<br>0.6<br>27.1<br>29.0<br>7<br>29.3<br>1.0<br>27.3<br>31.1<br>13<br>5<br>5<br>5<br>1.1<br>29.3<br>32.5<br>11<br>31.9<br>1.7<br>29.0<br>33.6<br>9      | 27.1<br>0.8<br>25.4<br>28.0<br>7<br>28.4<br>0.9<br>27.2<br>29.6<br>13<br>30.5<br>1.3<br>27.8<br>32.6<br>11<br>31.4<br>1.8<br>28.0<br>34.5<br>9                  | 10.1<br>0.4<br>9.5<br>10.7<br>7<br>10.0<br>0.4<br>9.4<br>10.7<br>13<br>M<br>3Ph1<br>11.6<br>0.7<br>10.6<br>12.9<br>11<br>12.0<br>0.8<br>10.6<br>13.5<br>9                                      | 8.6<br>0.3<br>8.0<br>9.1<br>7<br>8.7<br>0.5<br>8.2<br>9.9<br>13<br>Vycticein<br>3Ph2<br>9.4<br>0.7<br>8.4<br>10.9<br>11<br>9.8<br>0.7<br>8.4<br>10.4<br>9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.2<br>0.6<br>5.4<br>7.3<br>7<br>6.4<br>0.5<br>5.5<br>7.2<br>13<br>0095 sch<br>3Ph3<br>6.3<br>0.8<br>5.1<br>7.7<br>11<br>6.2<br>0.6<br>5.3<br>7.4<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.5<br>0.9<br>24.7<br>7<br>27.9<br>1.0<br>26.6<br>29.5<br>13<br><b>iteffenii</b><br>4Met<br>30.1<br>1.0<br>28.8<br>31.8<br>31.8<br>11<br>30.9<br>1.7<br>27.6<br>34.1<br>9               | 9.2<br>0.4<br>8.4<br>9.8<br>7<br>9.2<br>0.6<br>8.3<br>10.1<br>13<br>4Ph1<br>10.2<br>0.6<br>9.1<br>11.1<br>10.8<br>0.7<br>9.6<br>11.7<br>9.6                                               | 0.2<br>0.2<br>6.0<br>6.6<br>7<br>7<br>6.3<br>0.3<br>5.8<br>6.9<br>13<br>4Ph2<br>6.5<br>0.5<br>5.7<br>7.4<br>11<br>7.1<br>0.5<br>6.0<br>8.0<br>9                     | 26.7<br>0.7<br>25.0<br>27.2<br>7<br>27.9<br>1.0<br>26.5<br>29.3<br>13<br>5Met<br>30.0<br>1.1<br>27.7<br>31.7<br>11<br>30.6<br>1.8<br>27.0<br>33.6<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.0<br>0.5<br>6.5<br>7.9<br>7<br>7<br>7.3<br>0.4<br>6.7<br>8.1<br>13<br>5Ph1<br>5Ph1<br>5Ph1<br>5.5<br>6.7<br>8.6<br>11<br>8.0<br>0.6<br>6.6<br>8.9<br>9            | 4.1<br>0.2<br>3.8<br>4.4<br>7<br>3.9<br>0.2<br>3.5<br>4.3<br>13<br>5Ph2<br>4.5<br>0.3<br>4.1<br>5.2<br>11<br>4.7<br>0.4<br>4.0<br>5.4<br>9                | 10.8<br>0.3<br>10.4<br>11.1<br>7<br>10.9<br>0.4<br>10.3<br>11.6<br>13<br>TB<br>12.2<br>0.5<br>11.4<br>12.9<br>11<br>12.8<br>0.9<br>11.0<br>13.6<br>9         | 6.1<br>0.2<br>5.8<br>6.5<br>7<br>5.8<br>0.4<br>5.2<br>6.3<br>13<br>HF<br>6.3<br>0.4<br>5.5<br>7.3<br>11<br>6.6<br>0.1<br>6.5<br>7.0<br>9 | 4.00<br>0.15<br>3.83<br>4.22<br>7<br>4.09<br>0.12<br>3.96<br>4.37<br>13<br>0.12<br>3.96<br>4.37<br>13<br>0.14<br>3.73<br>4.15<br>11<br>3.98<br>0.15<br>3.70<br>4.24<br>9 | 5.36<br>0.14<br>5.16<br>5.54<br>6<br>5.39<br>0.14<br>5.43<br>0.15<br>5.43<br>0.15<br>5.43<br>0.15<br>5.17<br>5.61<br>11<br>5.48<br>0.08<br>5.30<br>5.58<br>9                                                        | 4,43<br>0,09<br>4,35<br>4,60<br>6<br>4,41<br>0,08<br>4,25<br>4,54<br>13<br><br>4,54<br>4,36<br>0,12<br>4,18<br>4,60<br>11<br>4,18<br>4,60<br>11<br>4,18<br>4,49<br>9          |
| <ul> <li>♂♂</li> <li>♀♀</li> <li>♂♂</li> <li>♀♀</li> <li>♀♀</li> <li>♀♀</li> </ul>      | $\begin{array}{c} x \\ \pm \text{ SD} \\ \text{Min} \\ \text{Max} \\ n= \\ \\ x \\ \pm \text{ SD} \\ \text{Min} \\ \text{Max} \\ n= \\ \\ \\ x \\ \pm \text{ SD} \\ \text{Min} \\ \text{Max} \\ n= \\ \\ x \\ \pm \text{ SD} \\ \text{Min} \\ \text{Max} \\ n= \\ \end{array}$                                                                                                                                                               | 4.4<br>0.3<br>4.0<br>4.8<br>7<br>5.3<br>0.8<br>4.3<br>6.5<br>13<br>8<br>M<br>5.1<br>0.4<br>4.5<br>6.0<br>11<br>5.7<br>0.6<br>5.0<br>7.0<br>9                                                                                              | 43.9<br>1.3<br>42.4<br>46.6<br>7<br>45.9<br>1.7<br>41.2<br>48.7<br>13<br>TL<br>44.1<br>1.8<br>41.9<br>47.2<br>11<br>46.3<br>1.0<br>43.8<br>47.3<br>9                                           | 27.8<br>1.5<br>25.6<br>7<br>30.0<br>1.4<br>28.1<br>32.6<br>13<br><br>26.4<br>35.4<br>11<br>33.3<br>1.9<br>30.6<br>35.9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.3<br>0.4<br>10.9<br>11.8<br>7<br>11.4<br>0.4<br>10.9<br>12.0<br>12<br>11.3<br>0.5<br>10.4<br>12.1<br>11.5<br>0.5<br>10.4<br>12.1<br>9                                          | 5.2<br>0.3<br>4.7<br>5.7<br>7<br>4.9<br>0.4<br>4.3<br>5.4<br>13<br>5.4<br>13<br>5.4<br>13<br>5.1<br>11<br>4.6<br>0.3<br>4.1<br>5.0<br>9                   | 28.2<br>0.6<br>27.1<br>29.0<br>7<br>29.3<br>1.0<br>27.3<br>31.1<br>13<br>31.1<br>29.3<br>32.5<br>11<br>31.9<br>1.7<br>29.0<br>33.6<br>9                    | 27.1<br>0.8<br>25.4<br>28.0<br>7<br>28.4<br>0.9<br>27.2<br>29.6<br>13<br>30.5<br>1.3<br>27.8<br>32.6<br>11<br>31.4<br>1.8<br>28.0<br>34.5<br>9                  | 10.1<br>0.4<br>9.5<br>10.7<br>7<br>10.0<br>0.4<br>9.4<br>10.7<br>13<br>M<br>3Ph1<br>11.6<br>0.7<br>10.6<br>12.9<br>11<br>12.0<br>0.8<br>10.6<br>13.5<br>9<br>K                                 | 8.6<br>0.3<br>8.0<br>9.1<br>7<br>8.7<br>0.5<br>8.2<br>9.9<br>13<br>Vycticein<br>3Ph2<br>9.4<br>0.7<br>8.4<br>10.9<br>11<br>9.8<br>0.7<br>8.4<br>10.4<br>9<br>9<br>20,7<br>8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.2<br>0.6<br>5.4<br>7.3<br>7<br>6.4<br>0.5<br>5.5<br>7.2<br>13<br>0.08<br>5.1<br>7.7<br>11<br>6.2<br>0.6<br>5.3<br>7.4<br>9<br>us inexs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26.5<br>0.9<br>24.7<br>7<br>7<br>27.9<br>1.0<br>26.6<br>29.5<br>13<br>10<br>26.6<br>30.1<br>1.0<br>28.8<br>31.8<br>11<br>30.9<br>1.7<br>27.6<br>34.1<br>9<br><b>pectatus</b>             | 9.2<br>0.4<br>8.4<br>9.8<br>7<br>9.2<br>0.6<br>8.3<br>10.1<br>13<br>4Ph1<br>10.2<br>0.6<br>9.1<br>11.1<br>10.8<br>0.7<br>9.6<br>11.7<br>9.6                                               | 0.3<br>0.2<br>6.0<br>6.6<br>7<br>6.3<br>0.3<br>5.8<br>6.9<br>13<br>4Ph2<br>6.5<br>0.5<br>5.7<br>7.4<br>11<br>7.1<br>0.5<br>6.0<br>8.0<br>9                          | 26.7<br>0.7<br>25.0<br>27.2<br>7<br>27.9<br>1.0<br>26.5<br>29.3<br>13<br>5Met<br>30.0<br>1.1<br>27.7<br>31.7<br>11<br>30.6<br>1.8<br>27.0<br>33.6<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.0<br>0.5<br>6.5<br>7.9<br>7<br>7<br>7.3<br>0.4<br>6.7<br>8.1<br>13<br>5Ph1<br>13<br>5Ph1<br>13<br>5Ph1<br>13<br>6.7<br>8.6<br>11<br>8.0<br>0.6<br>6.6<br>8.9<br>9 | 4.1<br>0.2<br>3.8<br>4.4<br>7<br>3.9<br>0.2<br>3.5<br>4.3<br>13<br>5Ph2<br>4.5<br>0.3<br>4.1<br>5.2<br>11<br>4.7<br>0.4<br>4.0<br>5.4<br>9                | 10.8<br>0.3<br>10.4<br>11.1<br>7<br>0.9<br>0.4<br>10.3<br>11.6<br>13<br>11.6<br>13<br>12.2<br>0.5<br>11.4<br>12.9<br>11<br>12.8<br>0.9<br>11.0<br>13.6<br>9  | 6.1<br>0.2<br>5.8<br>6.5<br>7<br>5.8<br>0.4<br>5.2<br>6.3<br>13<br>HF<br>6.3<br>0.4<br>5.5<br>7.3<br>11<br>6.6<br>0.1<br>6.5<br>7.0<br>9 | 4.00<br>0.15<br>3.83<br>4.22<br>7<br>4.09<br>0.12<br>3.96<br>4.37<br>13<br>0.12<br>3.96<br>4.37<br>13<br>0.14<br>3.73<br>4.15<br>11<br>3.98<br>0.15<br>3.70<br>4.24<br>9 | 5.36<br>0.14<br>5.16<br>5.54<br>6<br>0.14<br>5.30<br>0.14<br>5.43<br>0.15<br>5.43<br>0.15<br>5.43<br>0.15<br>5.17<br>5.43<br>0.15<br>5.17<br>5.43<br>0.15<br>5.43<br>0.15<br>5.48<br>0.08<br>5.30<br>5.58<br>9      | 4,43<br>0,09<br>4,35<br>4,60<br>6<br>4,41<br>0,08<br>4,25<br>4,54<br>13<br><br>C-M <sup>0</sup><br>4,36<br>0,12<br>4,18<br>4,60<br>11<br>4,32<br>0,10<br>4,18<br>4,49<br>9    |
| <i>৫৫</i><br>♀♀<br>৫৫<br>৫৫<br>৫৫<br>৫৫<br>৫৫<br>৫৫<br>৫৫<br>৫৫<br>৫৫<br>৫৫<br>৫৫<br>৫৫ | $\begin{array}{c} \pm \mathrm{SD} \\ \mathrm{Min} \\ \mathrm{Max} \\ \mathrm{n}= \\ \mathbf{X} \\ \pm \mathrm{SD} \\ \mathrm{Min} \\ \mathrm{Max} \\ \mathrm{n}= \\ \\ \mathbf{X} \\ \pm \mathrm{SD} \\ \mathrm{Min} \\ \mathrm{Max} \\ \mathrm{n}= \\ \\ \mathbf{X} \\ \pm \mathrm{SD} \\ \mathrm{Min} \\ \mathrm{Max} \\ \mathrm{n}= \\ \\ \mathbf{X} \\ \pm \mathrm{SD} \\ \mathrm{Min} \\ \mathrm{Max} \\ \mathrm{n}= \\ \end{array}$    | 4.4<br>0.3<br>4.0<br>4.8<br>7<br>5.3<br>0.8<br>4.3<br>6.5<br>13<br>BM<br>5.1<br>0.4<br>4.5<br>6.0<br>11<br>5.7<br>0.6<br>5.0<br>7.0<br>9<br>BM                                                                                            | 43.9<br>1.3<br>42.4<br>46.6<br>7<br>45.9<br>1.7<br>41.2<br>48.7<br>13<br>TL<br>44.1<br>1.8<br>41.9<br>47.2<br>11<br>46.3<br>1.0<br>43.8<br>47.3<br>9<br>TL                                     | 27.8<br>1.5<br>25.6<br>7<br>30.0<br>1.4<br>28.1<br>32.6<br>13<br><br>26.4<br>35.4<br>11<br>33.3<br>1.9<br>30.6<br>35.9<br>9<br><br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.3<br>0.4<br>10.9<br>11.8<br>7<br>11.4<br>0.4<br>10.9<br>12.0<br>12<br>11.3<br>0.5<br>10.4<br>12.1<br>11.5<br>0.5<br>10.4<br>12.1<br>9<br>9                                     | 5.2<br>0.3<br>4.7<br>5.7<br>7<br>4.9<br>0.4<br>4.3<br>5.4<br>13<br>5.4<br>13<br>7<br>7<br>0.3<br>3.9<br>5.1<br>11<br>4.6<br>0.3<br>4.1<br>5.0<br>9<br>7   | 28.2<br>0.6<br>27.1<br>29.0<br>7<br>29.3<br>1.0<br>27.3<br>31.1<br>13<br>31.1<br>29.3<br>32.5<br>11<br>31.9<br>1.7<br>29.0<br>33.6<br>9<br>FA              | 27.1<br>0.8<br>25.4<br>28.0<br>7<br>28.4<br>0.9<br>27.2<br>29.6<br>13<br>30.5<br>1.3<br>27.8<br>32.6<br>11<br>31.4<br>1.8<br>28.0<br>34.5<br>9                  | 10.1<br>0.4<br>9.5<br>10.7<br>7<br>10.0<br>0.4<br>9.4<br>10.7<br>13<br>M<br>3Ph1<br>11.6<br>0.7<br>10.6<br>12.9<br>11<br>12.0<br>0.8<br>10.6<br>13.5<br>9<br><b>F</b><br>3Ph1                  | 8.6<br>0.3<br>8.0<br>9.1<br>7<br>8.7<br>0.5<br>8.2<br>9.9<br>13<br>Vycticein<br>3Ph2<br>9.4<br>0.7<br>8.4<br>10.9<br>11<br>9.8<br>0.7<br>8.4<br>10.4<br>9<br>9<br>2 <sup>i</sup> pistrell<br>3Ph2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.2<br>0.6<br>5.4<br>7.3<br>7<br>6.4<br>0.5<br>5.5<br>7.2<br>13<br>0.08<br>5.1<br>7.7<br>11<br>6.2<br>0.6<br>5.3<br>7.4<br>9<br>usinexs<br>3Ph3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 26.5<br>0.9<br>24.7<br>7<br>27.9<br>1.0<br>26.6<br>29.5<br>13<br>10<br>26.6<br>30.1<br>1.0<br>28.8<br>31.8<br>31.8<br>11<br>30.9<br>1.7<br>27.6<br>34.1<br>9<br><b>pectatus</b><br>4 Met | 9.2<br>0.4<br>8.4<br>9.8<br>7<br>9.2<br>0.6<br>8.3<br>10.1<br>10.2<br>0.6<br>9.1<br>11.1<br>10.2<br>0.6<br>9.1<br>11.1<br>10.8<br>0.7<br>9.6<br>11.7<br>9.6<br>11.7<br>9.5                | 0.3<br>0.2<br>6.0<br>6.6<br>7<br>7<br>6.3<br>0.3<br>5.8<br>6.9<br>13<br>4Ph2<br>6.5<br>0.5<br>5.7<br>7.4<br>11<br>7.1<br>0.5<br>6.0<br>8.0<br>9<br>9                | 26.7<br>0.7<br>25.0<br>27.2<br>7<br>27.9<br>1.0<br>26.5<br>29.3<br>13<br>5Met<br>30.0<br>1.1<br>27.7<br>31.7<br>11<br>30.6<br>1.8<br>27.0<br>33.6<br>9<br>5Met                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.0<br>0.5<br>6.5<br>7.9<br>7<br>7.3<br>0.4<br>6.7<br>8.1<br>13<br>5Ph1<br>5Ph1<br>7.5<br>0.5<br>6.7<br>8.6<br>11<br>8.0<br>0.6<br>6.6<br>8.9<br>9<br>9             | 4.1<br>0.2<br>3.8<br>4.4<br>7<br>3.9<br>0.2<br>3.5<br>4.3<br>13<br>5Ph2<br>4.5<br>0.3<br>4.1<br>5.2<br>11<br>4.7<br>0.4<br>4.0<br>5.4<br>9                | 10.8<br>0.3<br>10.4<br>11.1<br>7<br>10.9<br>0.4<br>10.3<br>11.6<br>13<br>12.2<br>0.5<br>11.4<br>12.9<br>11<br>12.8<br>0.9<br>11.0<br>13.6<br>9<br>TB         | 6.1<br>0.2<br>5.8<br>6.5<br>7<br>5.8<br>0.4<br>5.2<br>6.3<br>13<br>0.4<br>5.5<br>7.3<br>11<br>6.6<br>0.1<br>6.5<br>7.0<br>9<br>HF        | 4.00<br>0.15<br>3.83<br>4.22<br>7<br>4.09<br>0.12<br>3.96<br>4.37<br>13<br>0.14<br>3.73<br>4.15<br>11<br>3.98<br>0.15<br>3.70<br>4.24<br>9<br>C-C                        | 5.36<br>0.14<br>5.16<br>5.54<br>6<br>5.39<br>0.14<br>5.43<br>0.15<br>5.43<br>0.15<br>5.43<br>0.15<br>5.43<br>0.15<br>5.17<br>5.61<br>11<br>5.48<br>0.08<br>5.58<br>9<br>9                                           | 4,43<br>0,09<br>4,35<br>4,60<br>6<br>4,41<br>0,08<br>4,25<br>4,54<br>13<br>                                                                                                   |
| <i>3</i> 3<br>♀♀<br><i>3</i> 3<br>♀♀<br>♀♀<br><i>\$</i> 2<br><i>\$</i> 2                | $\frac{\pm}{SD}$ Min<br>Max<br>n=<br>X<br>$\pm SD$ Min<br>Max<br>n=<br>X<br>$\pm SD$ Min<br>Max<br>n=<br>X<br>$\pm SD$ Min<br>Max<br>n=<br>X<br>$\pm SD$ Min<br>Max<br>n=                                                                                                                                                                                                                                                                    | 4.4<br>0.3<br>4.0<br>4.8<br>7<br>5.3<br>0.8<br>4.3<br>6.5<br>13<br>BM<br>5.1<br>0.4<br>4.5<br>6.0<br>11<br>5.7<br>0.6<br>5.0<br>7.0<br>9<br>BM<br>5.3<br>5.3<br>5.3<br>6.5<br>5.3<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5<br>6.5 | 43.9<br>1.3<br>42.4<br>46.6<br>7<br>45.9<br>1.7<br>41.2<br>48.7<br>13<br>TL<br>44.1<br>1.8<br>41.9<br>47.2<br>11<br>46.3<br>1.0<br>43.8<br>47.3<br>9<br>TL<br>46.3<br>1.0<br>43.8<br>47.3<br>9 | 27.8<br>1.5<br>25.6<br>7<br>30.0<br>1.4<br>28.1<br>32.6<br>13<br><br>26.4<br>35.4<br>11<br>33.3<br>1.9<br>30.6<br>35.9<br>9<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br>7<br><br><br><br><br>7<br><br><br>7<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | 11.3<br>0.4<br>10.9<br>11.8<br>7<br>11.4<br>0.4<br>10.9<br>12.0<br>12<br>11.3<br>0.5<br>10.4<br>12.1<br>11.5<br>0.5<br>10.4<br>12.1<br>9<br>E<br>E<br>11.9<br>9<br>E<br>E<br>11.9 | 5.2<br>0.3<br>4.7<br>5.7<br>7<br>4.9<br>0.4<br>4.3<br>5.4<br>13<br>5.4<br>13<br>5.4<br>13<br>5.1<br>11<br>4.6<br>0.3<br>4.1<br>5.0<br>9<br>7<br>TR<br>4.8 | 28.2<br>0.6<br>27.1<br>29.0<br>7<br>29.3<br>1.0<br>27.3<br>31.1<br>13<br>31.1<br>29.3<br>32.5<br>11<br>31.9<br>1.7<br>29.0<br>33.6<br>9<br>FA<br>32.6<br>9 | 27.1<br>0.8<br>25.4<br>28.0<br>7<br>28.4<br>0.9<br>27.2<br>29.6<br>13<br>30.5<br>1.3<br>27.8<br>32.6<br>11<br>31.4<br>1.8<br>28.0<br>34.5<br>9<br>33Met<br>31.6 | 10.1<br>0.4<br>9.5<br>10.7<br>7<br>10.0<br>0.4<br>9.4<br>10.7<br>13<br>M<br>3Ph1<br>11.6<br>0.7<br>10.6<br>12.9<br>11<br>12.0<br>0.8<br>10.6<br>13.5<br>9<br>K<br>3Ph1<br>12.1<br>12.1<br>12.1 | 8.6<br>0.3<br>8.0<br>9.1<br>7<br>8.7<br>0.5<br>8.2<br>9.9<br>13<br>Vycticein<br>3Ph2<br>9.4<br>0.7<br>8.4<br>10.9<br>11<br>9.8<br>0.7<br>8.4<br>10.9<br>11<br>9.8<br>0.7<br>8.4<br>10.9<br>11<br>9.8<br>0.7<br>8.4<br>10.9<br>11<br>9.8<br>0.7<br>8.4<br>10.9<br>11<br>9.8<br>0.7<br>8.4<br>10.9<br>11<br>9.8<br>0.7<br>8.4<br>10.9<br>11<br>9.8<br>0.7<br>8.4<br>10.9<br>11<br>9.8<br>0.7<br>8.4<br>10.9<br>11<br>9.8<br>0.7<br>8.4<br>10.9<br>11<br>9.8<br>0.7<br>8.4<br>10.9<br>11<br>9.8<br>0.7<br>8.4<br>10.9<br>11<br>9.8<br>0.7<br>8.4<br>10.9<br>11<br>9.8<br>0.7<br>8.4<br>10.4<br>9<br>9<br>9<br>11<br>9.8<br>0.7<br>8.4<br>10.4<br>9<br>10.4<br>9<br>10.4<br>9<br>10.4<br>9<br>10.4<br>9<br>10.4<br>9<br>10.4<br>10.4<br>10.4<br>11.4<br>10.4<br>10.4<br>10.4<br>11.4<br>10.4<br>11.4<br>10.4<br>11.4<br>10.4<br>11.4<br>10.4<br>11.4<br>10.4<br>11.4<br>10.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4<br>11.4 | 6.2<br>0.6<br>5.4<br>7.3<br>7<br>6.4<br>0.5<br>5.5<br>7.2<br>13<br>0.05<br>5.5<br>7.2<br>13<br>0.08<br>5.1<br>7.7<br>11<br>6.2<br>0.6<br>5.3<br>7.4<br>9<br>usinexs<br>3Ph3<br>5.2<br>7<br>13<br>0.6<br>5.3<br>7.4<br>9<br>0.5<br>5.5<br>7.2<br>13<br>0.8<br>5.1<br>7.7<br>13<br>0.8<br>5.1<br>7.7<br>13<br>0.8<br>5.1<br>7.7<br>13<br>0.8<br>5.1<br>7.7<br>13<br>0.8<br>5.1<br>7.7<br>13<br>0.8<br>5.1<br>7.7<br>13<br>0.8<br>5.1<br>7.7<br>11<br>0.6<br>5.3<br>7.7<br>11<br>0.6<br>5.3<br>7.7<br>11<br>0.6<br>5.3<br>7.7<br>11<br>0.6<br>5.3<br>7.7<br>11<br>0.6<br>5.3<br>7.4<br>9<br>0.6<br>5.3<br>7.4<br>9<br>0.6<br>5.3<br>7.4<br>9<br>0.6<br>5.3<br>7.4<br>9<br>0.6<br>5.3<br>7.4<br>9<br>0.6<br>5.3<br>7.4<br>9<br>0.6<br>5.3<br>7.4<br>9<br>0.6<br>5.3<br>7.4<br>9<br>0.6<br>5.3<br>7.4<br>9<br>0.6<br>5.3<br>7.4<br>9<br>0.6<br>5.3<br>7.4<br>9<br>0.6<br>5.3<br>7.4<br>9<br>0.6<br>5.3<br>7.4<br>9<br>0.6<br>5.3<br>7.4<br>9<br>0.6<br>5.3<br>7.4<br>9<br>0.6<br>5.3<br>7.4<br>9<br>0.6<br>5.3<br>7.4<br>9<br>0.6<br>5.3<br>7.4<br>9<br>0.6<br>5.3<br>7.4<br>9<br>0.6<br>5.3<br>7.4<br>9<br>0.5<br>5.4<br>7.4<br>9<br>0.5<br>7.4<br>9<br>0.5<br>7.4<br>9<br>7.4<br>7.4<br>7.4<br>7.4<br>7.4<br>7.4<br>7.4<br>7.4 | 26.5<br>0.9<br>24.7<br>27.7<br>7<br>27.9<br>1.0<br>26.6<br>29.5<br>13<br>10<br>26.6<br>30.1<br>1.0<br>28.8<br>31.8<br>11<br>30.9<br>1.7<br>27.6<br>34.1<br>9<br>pectatus<br>4Met<br>30.4 | 9.2<br>0.4<br>8.4<br>9.8<br>7<br>9.2<br>0.6<br>8.3<br>10.1<br>10.2<br>0.6<br>9.1<br>11.1<br>10.2<br>0.6<br>9.1<br>11.1<br>10.8<br>0.7<br>9.6<br>11.7<br>9.6<br>11.7<br>9.5<br>11.7<br>9.5 | 0.3<br>0.2<br>6.0<br>6.6<br>7<br>7<br>6.3<br>0.3<br>5.8<br>6.9<br>13<br>4Ph2<br>6.5<br>0.5<br>5.7<br>7.4<br>11<br>7.1<br>0.5<br>6.0<br>8.0<br>9<br>9<br>4Ph2<br>8.8 | 26.7<br>0.7<br>25.0<br>27.2<br>7<br>27.9<br>1.0<br>26.5<br>29.3<br>13<br>5Met<br>30.0<br>1.1<br>27.7<br>31.7<br>11<br>30.6<br>1.8<br>27.0<br>33.6<br>9<br>5Met<br>30.1<br>25.0<br>25.0<br>25.0<br>27.2<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.9<br>27.7<br>27.7<br>31.7<br>27.7<br>31.7<br>33.6<br>9<br>25.5<br>25.0<br>25.5<br>25.5<br>27.0<br>27.7<br>27.0<br>27.0<br>27.7<br>27.0<br>27.7<br>27.7<br>27.0<br>27.0<br>27.7<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0 | 7.0<br>0.5<br>6.5<br>7.9<br>7<br>7.3<br>0.4<br>6.7<br>8.1<br>13<br>5Ph1<br>8.0<br>0.6<br>6.6<br>8.9<br>9<br>9<br>5Ph1<br>8.0                                        | 4.1<br>0.2<br>3.8<br>4.4<br>7<br>3.9<br>0.2<br>3.5<br>4.3<br>13<br>5Ph2<br>4.5<br>0.3<br>4.1<br>5.2<br>11<br>4.7<br>0.4<br>4.0<br>5.4<br>9<br>5Ph2<br>6.4 | 10.8<br>0.3<br>10.4<br>11.1<br>7<br>10.9<br>0.4<br>10.3<br>11.6<br>13<br>12.2<br>0.5<br>11.4<br>12.9<br>11<br>12.8<br>0.9<br>11.0<br>13.6<br>9<br>TB<br>13.3 | 6.1<br>0.2<br>5.8<br>6.5<br>7<br>5.8<br>0.4<br>5.2<br>6.3<br>13<br>0.4<br>5.5<br>7.3<br>11<br>6.6<br>0.1<br>6.5<br>7.0<br>9<br>HF        | 4.00<br>0.15<br>3.83<br>4.22<br>7<br>4.09<br>0.12<br>3.96<br>4.37<br>13<br>0.14<br>3.73<br>4.15<br>11<br>3.98<br>0.15<br>3.70<br>4.24<br>9<br>C-C<br>3.98                | 5.36<br>0.14<br>5.16<br>5.54<br>6<br>5.39<br>0.14<br>5.43<br>0.15<br>5.43<br>0.15<br>5.43<br>0.15<br>5.43<br>0.15<br>5.17<br>5.43<br>0.15<br>5.43<br>0.15<br>5.43<br>0.15<br>5.48<br>0.08<br>5.30<br>5.58<br>9<br>9 | 4,43<br>0.09<br>4,35<br>4,60<br>6<br>4,41<br>0.08<br>4,25<br>4,54<br>4,36<br>0.12<br>4,18<br>4,60<br>11<br>4,32<br>0.10<br>4,18<br>4,49<br>9<br>9<br>C-M <sup>2</sup><br>4,42 |

Table 12/1. Measurements of Vespertilionidae from Burkina Faso.

|        |          |      |      |      |       |      |        |      |      | Pipistr     | ellus na  | nulus   |      |      |      |      |      |      |      |       |                                |                  |
|--------|----------|------|------|------|-------|------|--------|------|------|-------------|-----------|---------|------|------|------|------|------|------|------|-------|--------------------------------|------------------|
| Sex    |          | BM   | TL   | Т    | Е     | TR   | FA     | 3Met | 3Ph1 | 3Ph2        | 3Ph3      | 4Met    | 4Ph1 | 4Ph2 | 5Met | 5Ph1 | 5Ph2 | TB   | HF   | C-C   | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
| ් (AD) | USNM     |      |      |      |       |      |        |      |      |             |           |         |      |      |      |      |      |      |      |       |                                |                  |
| 454669 |          | 4.0  | 44   | 25   | 9     |      | [26.4] |      |      |             |           |         |      |      |      |      |      | 89   | 46   | 3 64  | 4 85                           | 3.90             |
|        |          | 1.0  |      | 20   | ,     |      | [20.1] |      |      | <b>n</b> '' |           |         |      |      |      |      |      | 0.7  | 1.0  | 5.01  | 1.05                           | 5.50             |
|        |          |      |      |      |       |      |        |      |      | Pipisti     | ellus rus | sucus   |      |      |      |      |      |      |      |       |                                |                  |
| Sex    |          | BM   | TL   | Т    | E     | TR   | FA     | 3Met | 3Ph1 | 3Ph2        | 3Ph3      | 4Met    | 4Ph1 | 4Ph2 | 5Met | 5Ph1 | 5Ph2 | TB   | HF   | C-C   | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
|        | х        | 4.0  | 42.0 | 31.1 | 10.9  | 4.8  | 27.5   | 27.3 | 9.9  | 7.8         | 5.5       | 27.0    | 9.0  | 6.2  | 26.5 | 6.5  | 3.6  | 10.1 | 5.5  | 3.80  | 5.09                           | 4.04             |
|        | $\pm$ SD |      | 3.6  | 6.8  | 0.8   | 0.4  | 1.1    | 0.4  | 0.5  | 0.3         | 0.4       | 0.4     | 0.4  | 0.3  | 0.3  | 0.3  | 0.6  | 0.7  | 0.4  | 0.03  | 0.06                           | 0.08             |
| 39     | Min      | 3.8  | 38.1 | 26.8 | 10.0  | 4.2  | 26.1   | 26.5 | 9.1  | 7.2         | 4.8       | 26.4    | 8.4  | 5.8  | 26.2 | 6.1  | 2.8  | 8.5  | 5.0  | 3.76  | 5.02                           | 3.92             |
|        | Max      | 4.5  | 47.3 | 46.1 | 12.2  | 5.3  | 29.9   | 27.9 | 10.6 | 8.1         | 6.0       | 27.6    | 9.4  | 6.8  | 27.2 | 6.9  | 4.2  | 10.7 | 6.2  | 3.86  | 5.16                           | 4.12             |
|        | n=       | 4    | 6    | 6    | 6     | 6    | 7      | 6    | 6    | 6           | 6         | 6       | 6    | 6    | 6    | 6    | 6    | 7    | 7    | 5     | 5                              | 5                |
|        |          |      |      |      |       |      |        |      |      | Scotoed     | cus alboj | fuscus  |      |      |      |      |      |      |      |       |                                |                  |
| Sex    |          | BM   | TL   | Т    | Е     | TR   | FA     | 3Met | 3Ph1 | 3Ph2        | 3Ph3      | 4Met    | 4Ph1 | 4Ph2 | 5Met | 5Ph1 | 5Ph2 | TB   | HF   | C-C   | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
| ð      |          | 8.0  | 60.6 | 32.9 | 11.7  | 4.9  | 31.7   | 32.6 | 11.9 | 8.5         | 6.0       | 32.1    | 10.9 | 6.3  | 31.0 | 6.8  | 4.4  | 11.9 | 8.5  | 4.79  | 6.47                           | 4.97             |
| ð      |          | 8.5  | 60.2 | 31.5 | 11.9  | 4.8  | 33.9   | 31.6 | 11.4 | 8.7         | 5.2       | 31.5    | 10.2 | 6.6  | 30.6 | 8.0  | 4.6  | 12.7 | 6.6  | 5.32  | 7.04                           | 5.36             |
|        | x        | 7.6  | 56.4 | 33.6 | 11.6  | 44   | 30.5   | 30.4 | 11.5 | 87          | 6.4       | 30.2    | 10.6 | 6.9  | 29.0 | 7.9  | 44   | 11.9 | 73   | 4 54  | 6.46                           | 4 75             |
|        | + SD     | 0.4  | 3.4  | 1 1  | 0.4   | 0.3  | 0.3    | 0.9  | 0.3  | 0.3         | 0.3       | 1.4     | 0.3  | 0.5  | 1.2  | 0.4  | 0.3  | 0.3  | 0.6  | 0.06  | 0.07                           | 0.11             |
| 0.0    | ± SD     | 7.0  | 50.2 | 22.2 | 11.2  | 4.0  | 20.2   | 20.5 | 11.1 | 0.5         | 6.1       | 20.1    | 10.5 | 0.5  | 28.1 | 7.4  | 4.1  | 11.6 | 6.0  | 4.44  | 6.24                           | 4.56             |
| Ϋ́     | Min      | 7.0  | 50.5 | 32.3 | 11.2  | 4.0  | 30.2   | 29.5 | 11.1 | 0.4         | 0.1       | 29.1    | 10.2 | 0.4  | 20.1 | 7.4  | 4.1  | 11.0 | 0.4  | 4.44  | 0.54                           | 4.50             |
|        | Max      | 8.0  | 60.5 | 35.2 | 12.2  | 5.0  | 31.1   | 32.1 | 11.9 | 9.1         | 0.7       | 32.9    | 11.0 | /./  | 31.3 | 8.5  | 4.9  | 12.2 | 8.1  | 4.62  | 6.54                           | 4.87             |
|        | n=       | 5    | 5    | 5    | 5     | 5    | 5      | 5    | 5    | 5           | 5         | 5       | 5    | 5    | 5    | 5    | 5    | 5    | 5    | 5     | 5                              | 5                |
|        |          |      |      |      |       |      |        |      |      |             |           |         |      |      |      |      |      |      |      |       |                                |                  |
| Sex    |          | BM   | TL   | Т    | E     | TR   | FA     | 3Met | 3Ph1 | 3Ph2        | 3Ph3      | 4Met    | 4Ph1 | 4Ph2 | 5Met | 5Ph1 | 5Ph2 | TB   | HF   | C-C   | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
| ð      |          | 10.8 | 51.4 | 35.8 | 13.8  | 5.2  | 33.7   | 32.1 | 12.0 | 9.3         | 6.4       | 32.0    | 11.4 | 6.8  | 31.8 | 7.4  | 5.1  | 12.7 | 8.0  | 4.65  | 6.82                           | 5.59             |
| ð      |          | 9.0  | 51.2 | 32.2 | 12.8  | 4.5  | 32.8   | 33.3 | 11.2 | 9.2         | 6.5       | 32.5    | 11.0 | 6.4  | 31.9 | 7.3  | 5.2  | 12.2 | 8.1  | 5.12  | 6.59                           | 5.06             |
|        | Х        | 10.7 | 51.8 | 32.5 | 13.0  | 4.8  | 32.2   | 31.6 | 11.3 | 8.7         | 6.3       | 31.2    | 11.1 | 6.8  | 30.3 | 7.4  | 4.9  | 11.7 | 7.7  | 4.86  | 6.57                           | 5.07             |
| 0.0    | Min      | 9.5  | 50.0 | 32.5 | 12.7  | 4.4  | 30.9   | 30.8 | 11.2 | 8.2         | 5.7       | 30.5    | 10.8 | 6.0  | 30.0 | 7.2  | 4.3  | 11.3 | 6.6  | 4.71  | 6.44                           | 4.98             |
| Ϋ́     | Max      | 11.8 | 52.6 | 32.6 | 13.5  | 5.2  | 33.3   | 33.0 | 11.5 | 9.0         | 7.1       | 32.1    | 11.4 | 7.3  | 30.8 | 7.5  | 5.5  | 11.9 | 8.4  | 4.94  | 6.84                           | 5.13             |
|        | n=       | 4    | 4    | 3    | 4     | 4    | 4      | 4    | 4    | 4           | 4         | 4       | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4     | 4                              | 4                |
|        |          |      |      |      |       |      |        |      |      | Scotop      | hilus dir | iganii  |      |      |      |      |      |      |      |       |                                |                  |
| Sex    |          | BM   | TL   | Т    | Е     | TR   | FA     | 3Met | 3Ph1 | 3Ph2        | 3Ph3      | 4Met    | 4Ph1 | 4Ph2 | 5Met | 5Ph1 | 5Ph2 | TB   | HF   | C-C   | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
| Ŷ      |          | 26.0 | 73.8 | 56.7 | 20.1  | 10.4 | 56.7   | 56.3 | 19.9 | 16.2        | 8.1       | 55.3    | 15.3 | 10.1 | 50.6 | 10.3 | 6.5  | 24.0 | 10.8 | 7.66  | 9.74                           | 7.52             |
| Ŷ      |          | 27.5 | 74.6 | 61.4 | 18.5  | 7.7  | 55.7   | 56.4 | 20.8 | 15.8        | 8.2       | 50.9    | 15.4 | 10.8 | 49.9 | 9.7  | 7.9  | 24.7 | 13.0 | 7.72  | 9.98                           | 7.41             |
|        |          |      |      |      |       |      |        |      |      | Scotoph     | ilus leuc | ogaster |      |      |      |      |      |      |      |       |                                |                  |
| Sex    |          | BM   | TL   | Т    | E     | TR   | FA     | 3Met | 3Ph1 | 3Ph2        | 3Ph3      | 4Met    | 4Ph1 | 4Ph2 | 5Met | 5Ph1 | 5Ph2 | TB   | HF   | C-C   | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
| 22     | v        | 20.3 | 67.0 | 47.9 | 14.5  | 7.4  | 49.6   | 46.2 | 16.9 | 14.1        | 7.8       | 45.8    | 12.0 | 8.8  | 42.5 | 87   | 5.7  | 19.4 | 9.1  | 6 3 9 | 8 37                           | 6.32             |
| 00     | + SD     | 1.4  | 2.1  | 26   | 0.9   | 0.5  | 49.0   | 0.0  | 0.7  | 0.7         | 0.4       | 0.0     | 0.5  | 0.8  | 1.0  | 0.7  | 0.7  | 19.4 | 9.1  | 0.59  | 0.20                           | 0.52             |
|        | Min      | 18.0 | 62.0 | 42.1 | 12.2  | 6.2  | 47.7   | 44.4 | 15.5 | 12.2        | 7.2       | 42.4    | 12.0 | 7.2  | 40.6 | 7.0  | 4.5  | 17.4 | 8.6  | 6.06  | 8.05                           | 6.03             |
|        | Man      | 22.5 | 70.9 | 45.1 | 16.1  | 0.2  | 52.0   | 40.2 | 19.5 | 15.4        | 0.5       | 46.9    | 12.0 | 11.1 | 44.4 | 0.6  | 7.0  | 20.9 | 10.2 | 6.72  | 0.05                           | 0.05             |
|        | Max      | 22.5 | /0.8 | 51.0 | 10.1  | 8.2  | 52.0   | 48.5 | 18.4 | 15.4        | 8.5       | 40.8    | 13.9 | 11.1 | 44.4 | 9.6  | 7.0  | 20.8 | 10.2 | 0.75  | 8.80                           | 0.00             |
|        | 11=<br>N | 19   | 19   | 19   | 19    | 19   | 19     | 19   | 19   | 19          | 19        | 19      | 19   | 19   | 19   | 19   | 19   | 19   | 19   | 19    | 19                             | 19               |
|        | X        | 23.0 | 70.0 | 48.8 | 14.6  | 7.6  | 51.2   | 48.0 | 17.4 | 14.1        | 8.2       | 47.4    | 13.2 | 8.9  | 44.8 | 9.2  | 5.8  | 19.6 | 9.3  | 6.37  | 8.35                           | 6.18             |
|        | ± SD     | 3.2  | 3.2  | 3.0  | 0.8   | 0.4  | 1.4    | 1.5  | 0.6  | 0.6         | 0.5       | 1.6     | 0.5  | 0.6  | 1.5  | 0.5  | 0.7  | 1.0  | 0.6  | 0.15  | 0.17                           | 0.15             |
| ŶŶ     | Min      | 18.3 | 63.1 | 42.9 | 13.1  | 6.8  | 48.1   | 45.9 | 16.3 | 13.2        | 7.3       | 44.0    | 12.3 | 7.9  | 42.7 | 8.5  | 4.4  | 18.2 | 8.2  | 6.10  | 8.09                           | 6.00             |
|        | Max      | 33.0 | 80.2 | 54.3 | 15.8  | 8.3  | 54.2   | 53.0 | 18.5 | 15.8        | 8.9       | 51.9    | 14.5 | 11.1 | 49.2 | 10.3 | 7.5  | 21.6 | 10.5 | 6.69  | 8.83                           | 6.58             |
|        | n=       | 33   | 33   | 33   | 33    | 33   | 33     | 33   | 33   | 33          | 33        | 33      | 33   | 33   | 33   | 33   | 33   | 33   | 33   | 33    | 33                             | 33               |
|        |          |      |      |      |       |      |        |      |      | Scoto       | philus v  | iridis  |      |      |      |      |      |      |      |       |                                |                  |
| Sex    |          | BM   | TL   | Т    | Е     | TR   | FA     | 3Met | 3Ph1 | 3Ph2        | 3Ph3      | 4Met    | 4Ph1 | 4Ph2 | 5Met | 5Ph1 | 5Ph2 | TB   | HF   | C-C   | M <sup>3</sup> -M <sup>3</sup> | C-M <sup>3</sup> |
|        | Х        | 14.1 | 59.9 | 47.0 | 14.6  | 7.1  | 45.3   | 42.2 | 15.4 | 12.6        | 7.3       | 41.4    | 11.9 | 7.9  | 39.1 | 8.1  | 5.0  | 18.5 | 8.9  | 5.68  | 7.75                           | 5.72             |
|        | $\pm$ SD | 3.2  | 1.9  | 2.1  | 0.6   | 0.4  | 1.0    | 1.7  | 0.5  | 0.7         | 0.6       | 1.4     | 0.7  | 0.5  | 1.6  | 0.5  | 0.6  | 0.5  | 0.9  | 0.16  | 0.20                           | 0.11             |
| 88     | Min      | 10.0 | 57.1 | 43.1 | 13.8  | 6.5  | 43.6   | 40.0 | 14.1 | 11.0        | 5.8       | 39.2    | 10.4 | 7.0  | 37.1 | 7.3  | 4.1  | 17.4 | 7.3  | 5.40  | 7.37                           | 5.55             |
|        | Max      | 23.5 | 64.5 | 51.1 | 15.6  | 7.9  | 47.4   | 46.8 | 16.3 | 13.6        | 8.0       | 45.2    | 12.9 | 8.9  | 43.1 | 9.3  | 6.1  | 19.3 | 10.2 | 6.01  | 8.06                           | 5.91             |
|        | n=       | 17   | 17   | 17   | 17    | 16   | 17     | 17   | 17   | 17          | 17        | 17      | 17   | 17   | 17   | 17   | 17   | 17   | 17   | 17    | 17                             | 17               |
|        | х        | 16.7 | 60.8 | 48.1 | 14.6  | 7.2  | 45.3   | 42.3 | 15.6 | 13.0        | 7.4       | 42.2    | 12.3 | 8.4  | 39.3 | 8.6  | 5.1  | 17.3 | 8.9  | 5.75  | 7.73                           | 5.80             |
|        | $\pm$ SD | 2.6  | 19   | 3.0  | 0.7   | 0.4  | 1.1    | 1.7  | 0.7  | 0.4         | 0.6       | 1.9     | 0.4  | 0.8  | 16   | 0.4  | 0.5  | 1.0  | 0.8  | 0.10  | 0.14                           | 0.14             |
| 00     | Min      | 11.0 | 58.4 | 43.4 | 13.0  | 63   | 43.5   | 40.5 | 14.2 | 12.3        | 6.7       | 40.1    | 11.5 | 7.0  | 37 7 | 8 1  | 4.5  | 16.3 | 8 1  | 5 65  | 7 52                           | 5 56             |
| + $+$  | Man      | 20.2 | 62.2 | 50 / | 15.9  | 74   | 16.1   | 15.5 | 16.0 | 12.5        | 0.7       | 15.1    | 12.0 | 0.4  | 12 6 | 0.1  | 6.0  | 10.5 | 10.4 | 5.00  | 0.00                           | 6.05             |
|        | wax      | 20.5 | 7    | 52.4 | -13.7 | 7.0  | 40.4   | 43.0 | 10.8 | -13.7       | 0.3       | 45.4    | 12.8 | 9.0  | 42.0 | 9.1  | 0.0  | 19.2 | 10.4 | 5.90  | 0.00                           | 0.05             |
|        | n=       | 7    | 7    | 7    | 7     | 7    | 7      | 7    | 7    | 7           | 7         | 7       | 7    | 7    | 7    | 7    | 7    | 7    | 7    | 7     | 7                              | 7                |

Table 12/2. Measurements of Vespertilionidae from Burkina Faso.

urements of *P. inexspectatus* are larger than the maximum measurements of *P. ructicus* (Table 12).

# Genus *Scotoecus* Thomas, 1901 *Scotoecus albofuscus* (Thomas, 1890)

*Scotoecus albofuscus* is located in the extreme Southwest in the South-Sudanian zone (Fig.10). All specimens have been captured near rock formations and in the presence of water in the cliffs of Banfora, next to a water point near hills and in shrubby savanna between a mountain and a dam. Their presence seems to be linked to the topography and the presence of water.

Body and cranial measurements do not help to clearly separate males from females. Only the forearm and cranial measurements (CC and MM) of males is higher than the maximum values of females (Table 12).

#### Scotoecus hirundo (de Winton, 1899)

*Scotoecus hirundo* is located in the extreme Southwest in the South-Sudanian zone (Fig.10). The specimens have been captured in a gallery forest located along a stream and in a woody savanna in the protected forest of Peni. Like *S. albofuscus*, *S. hirundo* inhabits open woodlands (Hill, 1974).

Measurements of body and cranial measurements do not help to distinguish *S. hirundo* from *S. albofuscus* and cannot also help to distinguish males from females (Table 12). Nevertheless, the maximum values of cranial measurements (CC and CM) of female from *S. albofuscus* are below the minimum values of cranial measurements from *S. hirundo*. Especially the white wings of *S. albofuscus* contribute to distinguish them.

# Genus *Scotophilus* Leach, 1821 *Scotophilus dinganii* (A. Smith, 1833)

Specimens have been captured in the extreme Southwest in the South-Sudanian zone (Fig. 10). Indeed, *Scotophilus dinganii* is found in most areas of savanna vegetation, from large forests until the beginning of Sahelian savannas (Robbins et al., 1985).

It is the largest *Scotophilus* fond in Burkina Faso. Measurements of the forearm reveal that it is larger than *S. leucogaster* and *S. viridis* (Table 12).

#### Scotophilus leucogaster (Cretzschmar, 1826)

Commonly encountered species, *Scotophilus leucogaster* is widespread and present in almost all vegetation zones except in the South-Sahelian zone (Fig. 10).

It is smaller than S. dinganii. The averages of body measurements (except 3Ph3) and averages of cranial measurements of S. leucogaster are below the measurements of S. dinganii. However, there is an overlap, because all the maximum values of S. leucogaster (BM, HB, 3Ph2, 3Ph3, 4 Met, 4Ph2, 5Ph1 and 5Ph2) are not inferior to the measurements of S. dinganii. However, all the maximum values of the forearm and cranial measurements of S. leucogaster are lower than the measurements of the forearm and cranial measurements of S. dinganii (Table 12). The measurement of forearm and cranial measurements are better suited to differentiate them. The averages of body measurements (except 3Ph2) of males are smaller than those of females. However, the averages of cranial measurements of males are higher than those of females. Among insectivorous bats this is the most widespread species in Burkina Faso.

### Scotophilus viridis (Peters, 1852)

*Scotophilus viridis* is present in all areas of African savanna but absent or rare in the driest areas of Sudanian and Sahelian savannas (Robbins et al., 1985). Indeed, In Burkina Faso, it is present only in the Sudanian zone (Fig. 11). It is therefore less widespread than *S. leucogaster*.

It is the smallest of Scotophilus found in Burkina Faso (Table 12). The averages of body measurements (except Ear, FA, Tib and HF) and cranial measurements (except MM) of males are smaller than those of females. They do not really help to separate them. The averages of body measurements (except Ear) and cranial measurements of S. viridis are lower than those of S. leucogaster. However, only maximum values (FA, CC and CM) of males from S. viridis are below the minimum values of males from S. leucogaster. In addition, only the maximum values (FA, 3 Met, CC and MM) of females from S. viridis are below the minimum values of females from S. leucogaster. The measurement of the forearm remains the best measurement to separate the two species.



Figure 11. Distribution of Scotophilus viridis in Burkina Faso.

### Distribution at the family level

The families Pteropodidae, Hipposideridae, Emballonuridae, Nycteridae and Molossidae were present in all phytogeographic areas in Burkina Faso. However, Rhinolophidae were absent in the North-Sahalian zone but present in the rest of the country. Similarly, Vespertilionidae were absent in the south-Sahelian zone but present in the rest of the country. Rhinopomatidae were only present in the extreme north and the extreme south of the country, while Megadermatidae were present in the Sudanian zone only. Of the 51 species found in Burkina Faso, only 3 species are exclusively located in the Sahelian zone against 32 in the Sudanian zone. The remaining 16 species are found both in the Sahelian and Sudanian areas (Table 13).

### DISCUSSION

Of the 36 species already reported since the late 1980s, five species were not captured again and other 15 species have been identified for the first time in Burkina Faso (Kangoyé et al., 2012). Most specimens have been captured in the southern part of the country with a particular emphasis on the Southwest which had been under-sampled. Among the five species already reported in Burkina Faso

| Spacias                    | Phytogeographic |            | Spacias                  | Phytoge  | ographic  | Species                   | Phytogeographic zones  |        |         |          |  |  |
|----------------------------|-----------------|------------|--------------------------|----------|-----------|---------------------------|------------------------|--------|---------|----------|--|--|
| Species                    | zones           |            | Species                  | zones    |           | Species                   | T hytogeographic zones |        |         |          |  |  |
|                            | Sudania         | in zone on | ıly                      | Saheliar | n zone on | ly                        | Saheli                 | an and | Sudania | in zones |  |  |
| Pipistrellus nanulus       | NSud            |            | Asellia tridens          | NSah     |           | Epomophorus gambianus     | NSah                   | SSah   | NSud    | SSud     |  |  |
| Micropteropus pusillus     | NSud            | SSud       | Rhinopoma microphyllum   | NSah     |           | Hipposideros ruber        | NSah                   | SSah   | NSud    | SSud     |  |  |
| Nanonycteris veldkampii    | NSud            | SSud       | Glauconycteris variegata |          | SSah      | Nycteris macrotis         | NSah                   | SSah   | NSud    | SSud     |  |  |
| Hipposideros jonesi        | NSud            | SSud       |                          |          |           | Nycteris thebaica         | NSah                   | SSah   | NSud    | SSud     |  |  |
| Hipposideros vittatus      | NSud            | SSud       |                          |          |           | Chaerephon pumilus        | NSah                   | SSah   | NSud    | SSud     |  |  |
| Lavia frons                | NSud            | SSud       |                          |          |           | Eidolon helvum            | NSah                   |        | NSud    | SSud     |  |  |
| Rhinolophus fumigatus      | NSud            | SSud       |                          |          |           | Chaerephon major          | NSah                   |        | NSud    | SSud     |  |  |
| Nycteris hispida           | NSud            | SSud       |                          |          |           | Neoromicia guineensis     | NSah                   |        | NSud    | SSud     |  |  |
| Chaerephon nigeriae        | NSud            | SSud       |                          |          |           | Nycticeinops schlieffenii | NSah                   |        | NSud    | SSud     |  |  |
| Mops condylurus            | NSud            | SSud       |                          |          |           | Scotophilus leucogaster   | NSah                   |        | NSud    | SSud     |  |  |
| Neoromicia somalica        | NSud            | SSud       |                          |          |           | Taphozous perforatus      | NSah                   | SSah   |         | SSud     |  |  |
| Pipistrellus rusticus      | NSud            | SSud       |                          |          |           | Hipposideros tephrus      |                        | SSah   | NSud    | SSud     |  |  |
| Scotophilus viridis        | NSud            | SSud       |                          |          |           | Rhinolophus landeri       |                        | SSah   | NSud    | SSud     |  |  |
| Hypsignathus monstrosus    |                 | SSud       |                          |          |           | Nycteris gambiensis       |                        | SSah   | NSud    | SSud     |  |  |
| Lissonycteris angolensis   |                 | SSud       |                          |          |           | Rhinopoma cystops         | NSah                   |        |         | SSud     |  |  |
| Rousettus aegyptiacus      |                 | SSud       |                          |          |           | Taphozous nudiventris     | NSah                   |        |         | SSud     |  |  |
| Hipposideros abae          |                 | SSud       |                          |          |           | -                         |                        |        |         |          |  |  |
| Hipposideros cyclops       |                 | SSud       |                          |          |           |                           |                        |        |         |          |  |  |
| Rhinolophus alcyone        |                 | SSud       |                          |          |           |                           |                        |        |         |          |  |  |
| Coleura afra               |                 | SSud       |                          |          |           |                           |                        |        |         |          |  |  |
| Nycteris grandis           |                 | SSud       |                          |          |           |                           |                        |        |         |          |  |  |
| Mops demonstrator          |                 | SSud       |                          |          |           |                           |                        |        |         |          |  |  |
| Mops midas                 |                 | SSud       |                          |          |           |                           |                        |        |         |          |  |  |
| Myotis bocagii             |                 | SSud       |                          |          |           |                           |                        |        |         |          |  |  |
| Neoromicia capensis        |                 | SSud       |                          |          |           |                           |                        |        |         |          |  |  |
| Neoromicia nana            |                 | SSud       |                          |          |           |                           |                        |        |         |          |  |  |
| Neoromicia rendalli        |                 | SSud       |                          |          |           |                           |                        |        |         |          |  |  |
| Pipistrellus deserti       |                 | SSud       |                          |          |           |                           |                        |        |         |          |  |  |
| Pipistrellus inexspectatus |                 | SSud       |                          |          |           |                           |                        |        |         |          |  |  |
| Scotoecus albofuscus       |                 | SSud       |                          |          |           |                           |                        |        |         |          |  |  |
| Scotoecus hirundo          |                 | SSud       |                          |          |           |                           |                        |        |         |          |  |  |
| Scotophilus dinganii       |                 | SSud       |                          |          |           |                           |                        |        |         |          |  |  |
| 32                         |                 |            | 3                        |          |           | 16                        |                        |        |         |          |  |  |

Table 13. Distribution of bats species by phytogeographic zone. Nsah: North-Sahelian, Ssah: South-Sahelian, Nsud: North-Sudanian, Ssud: South-Sudanian. and which have not been captured during 2002 to 2009, two species of whom *A. tridens* and *R. microphyllum* are reported only in the North-Sahelian zone. *Hypsignathus monstrosus* although present in the South-Sudanian zone has not been captured. In addition, *M. midas* and *P. deserti*, two species captured previously next to the river Nazinon have not also been captured. *Pipistrelllus nanulus* although already collected by the Smithsonian Institution African Mammal Project and present at USNM, had yet been published later by African Chiroptera Report, 2006. Although it had not been captured during this study.

The 15 new species captured between 2002 to 2009 are: *N. veldkampii* and *R. aegyptiacus* (Pteropodidae); *C. afra* (Emballonuridae); *R. alcyone* (Rhinolophidae); *H. cyclops* (Hipposideridae); *C. nigeriae* and *M. condylurus* (Molossidae); *N. grandis* (Nycteridae); *G. variegata*, *N. capensis*, *N. rendalli*, *P. inexspectatus*, *S. albofuscus*, *S. hirundo* and *S. dinganii* (Vespertilionidae).

Hipposideros cyclops, N. grandis and R. alcyone are forest species. They are located in the extreme south-western Burkina Faso, where there are the wettest areas of the country. Nanonycteris veldkampii, is also a forest species that is found in Burkina Faso during rainy seasons only. Although *P. nanulus* is a forest species, the only specimen collected thus far comes from the Centre. Roussetus aegyptiacus and C. afra are cavernicolous species. They are both located in the South and have all been captured in rock formations that constitute their resting places. Chaerephon nigeriae and M. condylurus, although they are synanthropic species because of the fact that they are often found in homes have been only located in the South. Neoromicia capensis, N. rendalli, P. inexspectatus, S. albofuscus, S. hirundo and S. dinganii are species of moist savannas. They are all located in the Southwest in the South-Sudanian zone except N. rendalli which is located in the Southeast. As for G. variegata, also a species of humid savannas, it is present in the North-Sudanian zone.

After this study, a total of 51 species were found in Burkina Faso. And, compared with other countries, the diversity of bats in Burkina Faso can be described as being average. In countries like Ivory Coast, where we find 87 species of bats (J. Fahr unpublished data), Ghana, 86 species (Weber & Fahr, 2007) and Cameroon, 72 species (Bakwo, 2009) diversity can be explained by the fact that these countries are near the coast. In addition to the forest areas, these countries, also have the Guinean zone. And this Guinean zone is a transition zone that contains a wide variety of species (Fahr & Kalko, 2010). This study helped to collect many new pieces of information on the distribution of many species. However, studies using different capture methodologies are needed to obtain complete inventories of the diversity of bats (Kalko et al., 1996; Bergallo et al., 2003) and as already noted by Kalko (1997), insectivores are species which are difficult to capture and the combination of several methods particularly acoustic methods are used to identify them at the species level (Kalko & Handley, 2001). It would therefore not be surprising to capture other species in Burkina Faso so as to contribute more to a better understanding of the ecology of bats for better conservation approaches.

*Epomophorus gambianus*, *H. ruber*, *N. macrotis*, *N. thebaica* and *C. pumilus* are species that have a wider distribution across Burkina Faso, as they have been captured in all phytogeographic areas. These species are also widely distributed in West Africa (African Chiroptera Report, 2012).

Eidolon helvum, T. perforatus, C. major, N. schlieffenii, N. guineensis and S. leucogaster have atypical distributions. Eidolon helvum, C. major, N. schlieffenii, N. guineensis and S. leucogaster are present everywhere except in south-Sahelian zone. About T. perforatus, it is present everywhere except North-Sudanian zone. Seen how these species are distributed in Burkina Faso, they should all be present on the entire territory of Burkina Faso.

*Hipposideros tephrus, R. landeri* and *N. gambiensis* are located in all phytogeographic areas except in the North-Sahelian zone. It is in fact, species that are often encountered in savanna (Koch-Weser, 1984; Van Cakenberghe & De Vree, 1998).

Species located in two phytogeographic areas (*M. pusillus*, *N. veldkampii*, *H. jonesi*, *H. vittatus*, *L. frons*, *R. fumigatus*, *N. hispida*, *C. nigeriae*, *M. condylurus*, *N. somalica*, *P. rusticus* and *S. viridis*) are mainly present in the Sudanian zone except *T. nudiventris* and *R. cystops* which have been located in extreme north and extreme south of the country.

Most bats species present in Burkina Faso, 23 in total (*A. tridens*, *R. microphyllum*, *G. variegata*, *P. nanulus*, *H. monstrosus*, *L. angolensis*, *R. aegyptiacus*, *H. abae*, *H. cyclops*, *R. alcyone*, *C. afra*, *N.*  grandis, M. demonstrator, M. midas, M. bocagii, N. capensis, N. nana, N. rendalli, P. deserti, P. inexspectatus, S. albofuscus, S. hirundo and S. dinganii) are rarely captured. Probably these species have small populations and restricted distributions within the country because they are found in only one of the four phytogeographical areas. The majority of these species (19) is located in South-Sudanian zone against one in North-Sudanian (P. nanulus) area, one in the southern Sahelian zone (G. variegata) and two in the North-Sahelian zone (A. tridens and R. microphyllum). Above 60% of Burkina Faso is under the influence of Sudanian climate (Ministère de l'Environnement et de l'Eau, 1999) including the Centre and South. This can explain partly that 32 of the 51 species found in Burkina Faso, are exclusively recorded in the Sudanian zone. Nevertheless, favorable climatic conditions in South-Sudanian zone of Burkina Faso are the real reason of the higher species diversity in this area. Rough conditions in the Sahelian zone justify that only 3 species are exclusives of this area. Nevertheless 16 other species were found in this area (as well as in the Sudanian zone), proving that this area can provide suitable habitats, shelter, water and food for important diversity of bats species. Exclusive species indicated the importance in biodiversity conservation of this area, generally neglected in conservation programs.

This study has allowed us to highlight the geographical distribution of bats in Burkina Faso. Although bats were captured in all phytogeographic areas in Burkina Faso, distribution patterns change depending on species and even families. Results highlight the importance of each phytogeographic area as unique habitat for some species. It is then important, for conservation and management, to give equal consideration to each area. Habitats condition is likely the factor influencing the species distribution. A further step in bat studies in Burkina Faso could be the modeling of species distribution based on environmental variables, which could give some useful information for species management.

# ACKNOWLEDGMENTS

This article is dedicated to the memory of Professor Elisabeth K.V. Kalko. Our thanks go to the University of Ouagadougou technicians, Cyrille Sinaré, Sidiki Bourgou, and the drivers Appolinaire Samné and Yacouba Guinko who contributed to the BIOTA data collection phase. We also thank the IRD technicians Chaka Koné, Yves Papillon and Doukary Abdoulaye, and the drivers Ibrahima Sidibé and Mamadou Doumbia. We thank Jean César (Cirad) coordinator of the FSP project N° 2002-87 « Gestion durable des ressources sylvopastorales et production fourragère dans l'Ouest du Burkina-Faso», who allowed the use of Laurent Granjon's bat collection data in this paper. Finally, we are grateful to the "BIOTA West Africa" that funded this research.

### REFERENCES

- Adam F. & Hubert B., 1976. Les Nycteridae (Chiroptera) du Sénégal: Distribution, biométrie et dimorphisme sexuel. Mammalia, 40: 597–613.
- Aellen V., 1952. Contribution à l'étude des Chiroptères du Cameroun. Mémoires de la Société Neuchâteloise des Sciences Naturelles, 8: 1–121.
- African Chiroptera Report, 2006. African Chiroptera Project, Pretoria, 1198 pp. (Available from: http:// www.Africanbats.org).
- African Chiroptera Report, 2012. African Chiroptera Project, Pretoria, 4474 pp. (Available from: http:// www. Africanbats.org).
- Andelman S.J. & Willig M.R., 2002. Alternative configurations of conservation reserves for Paraguayan bats: Considerations of spatial scale. Conservation Biology, 16: 1352–1363.
- Anthony E.L.P., 1988. Age determination in bats. In: Kunz T.H. (Ed.), 1988. Ecological and behavioral methods for the study of bats. Smithsonian Institution Press, Washington, D.C., 47–58.
- August P.V., 1983. The role of habitat complexity and heterogeneity in structuring tropical mammal communities. Ecology, 64: 1495–1507.
- Aulagnier S., Coquillart H., Thonnérieux Y. & Garcin R., 1987. Notes sur quelques chauves-souris du Burkina. Science et Technique, 17: 77–79.
- Bakwo E.M., 2009. Inventaire des chauves-souris de la réserve de biosphère du Dja, Cameroun. Le Vespère, 2: 11–20.
- Bazzaz F.A., 1975. Plant species diversity in old-field successional ecosystems in southern Illinois. Ecology, 56, 485–488.
- Benda P., Andreas M., Kock D., Luèan R.K., Munclinger
  P., Nová P., Obuch J., Ochman K., Reiter A., Uhrin
  M. & Weinfurtová D., 2006. Bats (Mammalia: Chiroptera) of the Eastern Mediterranean. Part 4. Bat

fauna of Syria: Distribution, systematics, ecology. Acta Societatis Zoologicae Bohemicae, 70: 1–29.

- Bergallo H.G., Esbérard C.E.L., Mello M.A.R., Lins V., Mangolin R., Melo G.G.S. & Baptista M., 2003. Bat species richness in Atlantic Forest: What is the minimum sampling effort? Biotropica, 35: 278–288.
- Bergmans W., 1988. Taxonomy and biogeography of African fruit bats (Mammalia, Megachiroptera).
  1. General introduction; material and methods; results: The genus *Epomophorus* BENNET, 1836. Beaufortia, 38: 75–146.
- Bergmans W., 1989. Taxonomy and biogeography of African fruit bats (Mammalia, Megachiroptera). 2.
  The genera *Micropteropus* Matschie, 1899, *Epomops* Gray, 1870, *Hypsignathus* H. Allen, 1861, *Nanonycteris* Matschie, 1899, and *Plerotes* Andersen, 1910. Beaufortia, 39: 89–153.
- Bergmans W., 1991. Taxonomy and biogeography of African fruit bats (Mammalia, Megachiroptera). 3.
  The genera *Scotonycteris* Matschie, 1894, *Casinycteris* Thomas, 1910, *Pteropus* Brisson, 1762 and *Eidolon* Rafinesque, 1815. Beaufortia, 40: 111–176.
- Bergmans W., 1997. Taxonomy and biogeography of African fruit bats (Mammalia, Megachiroptera). 5. The genera *Lissonycteris* Andersen, 1912, *Myonycteris* Matschie, 1899 and *Megaloglossus* Pagenstecher, 1885; general remarks and conclusions; annex: Key to all species. Beaufortia, 47: 11–90.
- Bergmans W., 2002. Les chauves-souris (Mammalia, Chiroptera) de Bénin: Compte rendu préliminaire. UICN-CBDD. The Netherlands Committee of IUCN, Amsterdam, 41 pp.
- Bernard E. 2001. Vertical stratification of bat communities in primary forests of Central Amazon, Brazil. Journal of Tropical Ecology, 17: 115–126.
- Boulay M.C. & Robbins C.B., 1989. *Epomophorus* gambianus. Mammalian Species, 344: 1–5.
- Csorba G., Ujhelyi P. & Thomas N., 2003. Horseshoe Bats of the World (Chiroptera: Rhinolophidae). Bishop's Castle, Shropshire, UK: Alana Books, 160 pp.
- Decher J. & Fahr J., 2005. *Hipposideros cyclops*. Mammalian Species, 763: 1–7.
- Dipama J.M., 2010. L'hydrographie. In: Thiombiano A. & Kampann D. (Eds.), 2010. Atlas de la biodiversité de l'Afrique de l'Ouest, Tome II: Burkina Faso.). Ouagadoufou & Frankfurt/Main, 134–137.
- Djossa B.A., 2007. Gestion des Essences Agroforestières Spontanées et Rôle des Roussettes dans la Dispersion de leurs Semences dans la Réserve de Biosphère de la Pendjari (Bénin). Université d'Abomey-Calavi: Thèse de doctorat, 193 pp.
- Fahr J. & Kalko E.K.V., 2010. Biome transitions as centres of diversity: Habitat heterogeneity and diversity patterns of West African bat assemblages across spatial scales. Ecography, 33: 1–31.

- Fahr J., 1996. Die Chiroptera der Elfenbeinküste (unter Berücksichtigung des westafrikanischen Raumes): Taxonomie, Habitatpräferenzen und Lebensgemeinschaften. Julius-Maximilians-Universität Würzburg: Diploma-Thesis, 204 pp.
- Fahr J., 2008. Diversity Patterns and Taxonomy of West African Bat Assemblages: Effects of Spatial Scale and Habitat Structure. Ulm University: Ph.D. dissertation, 315 pp.
- Fahr J., Djossa B.A. & Vierhaus H., 2006. Rapid assessment of bats (Chiroptera) in Déré, Diécké and Mt. Béro classified forests, southeastern Guinea; including a review of the distribution of bats in Guinée Forestière. In: Wright H. E., Mccullough J., Alonso L. E. & Diallo M.S. (Eds.), 2008. A Rapid Biological Assessment of Three Classified Forests in Southeastern Guinea, RAP Bulletin of Biological Assessment, Vol. 40,Conservation International, Washington, D.C, 16–180.
- Fontès J. & Guinko S., 1995. Carte de la végétation et de l'occupation du sol du Burkina Faso. Ministère de la cooperation française, projet Campus, Toulouse, 68 pp.
- Ganaba S., 2008. Caractérisation, utilisations, tests de restauration et gestion de lavégétation ligneuse au Sahel, Burkina Faso. Thèse d'Etat, Université Cheick Anta Diop.
- Goodman S.M., Cardiff S.G. & Ratrimomanarivo F.H., 2008. First record of *Coleura* (Chiroptera: Emballonuridae) on Madagascar and identification and diagnosis of members of the genus. Systematics and Biodiversity, 6: 283–292.
- Green A.A., 1983. Rodents and bats of Arli and Pendjari National Parks, Upper Volta and Benin. Nigerian Field, 47: 167–184.
- Guinko S., 1984. La végétation de la Haute Volta. Thèse de doctorat. Université de Bordeaux III, 318 pp.
- Happold D.C.D., 1987. The Mammals of Nigeria. Oxford: Clarendon; partim, nur Chiroptera, 402 pp.
- Hawkins B.A., Field R., Cornell H.V., Currie D.J., Guégan J.-F., Kaufman D.M., Kerr J.T., Mittelbach G.G., Oberdorff T., O'Brien E.M., Porter E.E. & Turner J. R. G., 2003. Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84: 3105–3117.
- Hayman R.W., 1967. Preliminary identification manual for African mammals. In: Meester J. (Ed.), 1967. II. Chiroptera. Smithsonian Institution, Washington, D.C., 1–155.
- Hayman R.W. & Hill J.E., 1971. Order Chiroptera. In: Meester J. & Setzer H.W. (Eds.), 1971. The Mammals of Africa, an Identification Manual. Smithsonian Institution, Washington, D.C., 1–73.
- Hervy J.-P. & Legros F., 1981a. Enquête sur la circulation d'arbovirus dans plusieurs milieux boisés de la région

de Bobo-Dioulasso (Haute-Volta). II. Prélèvements de petits mammifères: Lots constitués en 1980. Organisation de Coordination et de Coopération pour la Lutte contre les Grandes Endémies, Centre Muraz, Section d'Entomologie, Bobo-Dioulasso, Burkina Faso, 9 pp.

- Hervy J.-P. & Legros F., 1981b. Enquête sur la circulation d'arbovirus dans plusieurs milieux boisés de la région de Bobo-Dioulasso (Haute-Volta): Lots de Culicidae et prélèvements de petits vertèbrés réalisés en 1981. Organisation de Coordination et de Coopération pour la Lutte contre les Grandes Endémies, Centre Muraz, Section d'Entomologie, Bobo-Dioulasso, Burkina Faso, 15 pp.
- Hervy J.-P. & Legros F., 1981c. Enquête sur la circulation d'arbovirus en forêt de Lera, Sud-Ouest de la Haute-Volta (du 17 au 23 août 1981). Organisation de Coordination et de Coopération pour la Lutte contre les Grandes Endémies, Centre Muraz, Section d' Entomologie, Bobo-Dioulasso, Burkina Faso, 17 pp.
- Hill J.E., 1974. A review of *Scotoecus* Thomas, 1901 (Chiroptera: Vespertilionidae). Bulletin of the British Museum (Natural History) Zoology 27: 167–188.
- Hill J.E., 1977. A review of the Rhinopomatidae (Mammalia: Chiroptera). Bulletin of the British Museum (Natural History). Zoology, 32: 29–43.
- Hill J. E. & Harrison D. L., 1987. The baculum in the Vespertilioninae (Chiroptera: Vespertilionidae) with a systematic review, a synopsis of *Pipistrellus* and *Eptesicus* and the desriptions of a new genus and subgenus. Bulletin of the British Museum (Natural History). Zoology, 52: 225–305.
- Horáček I., Hanák V. & Gaisler J., 2000. Bats of the Palaearctic Region: A taxonomic and biogeographical review. In: Woloszyn B.W. (Ed.), 2000. Proceedings of the VIIIth EBRS, Vol. 1: Approaches to Biogeography and Ecology of Bats. Krakow: Institute of Systematics and Evolution of Animals PAS; 11–157.
- Hulva P., Horácek I. & Benda P., 2007. Molecules, morphometrics and new fossils provide an integrated view of the evolutionary history of Rhinopomatidae (Mammalia: Chiroptera). BMC Evolutionary Biology, 7: 165, 15 pp.
- Kalko E.K.V. & Handley Jr. C.O., 2001. Neotropical bats in the canopy: Diversity, community structure and implications for conservation. Plant Ecology, 153: 319–333.
- Kalko E.K.V., 1997. Diversity in tropical bats. In: Ulrich H. (Ed.), 1997. Tropical Biodiversity and Systematics. Proceedings of the International Symposium on Biodiversity and Systematics in Tropical Ecosystems. Bonn: Zoologisches Forschungsinstitut und Museum Alexander Koenig, pp. 13–43.
- Kalko E.K.V., 1998. Organisation and diversity of tropical bat communities through space and time. Zoology, 101: 281–297.

- Kalko E.K.V., Handley Jr. C.O. & Handley D., 1996. Organization, diversity and long-term dynamics of a Neotropical bat community. In: Cody M.L. & Smallwood J. (Eds.), 1996. Long-Term Studies in Vertebrate Communities. Los Angeles: Academic, 503–553.
- Kangoyé N.M., Oueda A., Thiombiano A. & Guenda W., 2012. Bats (Chiroptera) of Burkina Faso: Preliminary list with fifteen first records species. International Journal of Biological and Chemical Sciences, 6: 6017–6030.
- Koch-Weser S., 1984. Fledermäuse aus Obervolta, W-Afrika (Mammalia: Chiroptera). Senckenbergiana Biologica, 64: 255–311.
- Kock D., Al-Jumaily M.M. & Nasher A.K., 2001. On the genus *Rhinopoma* E. Geoffroy 1818 and a record of *Rh. muscatellum* Thomas 1903 from Yemen. Senckenbergiana Biologica, 81: 285–287.
- Kock D., 1969. Die Fledermaus-Fauna des Sudan. Abhandlungen Der Senckenbergischen naturforschenden Gesellschaft, 521: 1–238.
- Kock D., Barnett L., Fahr J. & Emms C., 2002. On a collection of bats (Mammalia: Chiroptera) from the Gambia. Acta Chiropterologica, 4: 77–97.
- Koopman K.F., 1975. Bats of the Sudan. Bulletin of the American Museum of Natural History, 154: 353–444.
- Koopman K.F., Mumford R.E. & Heisterberg J.F., 1978. Bat from Upper Volta, West Africa. American Museum Novitates, 2643: 1–6.
- Lim B.K. & Engstrom M.D., 2001. Bat community structure at Iwokrama Forest, Guyana. Journal of Tropical Ecology, 17: 647–665.
- Mc Lellan L.J., 1986. Notes on bats of Sudan. American Museum Novitates, 2839: 1–12.
- Menzies, J.I. 1973. A study of leaf-nosed bats (*Hippos-ideros caffer* and *Rhinolophus landeri*) in a cave in northern Nigeria. Journal of Mammalogy, 54: 930–945.
- Ministère de l'Environnement et de l'Eau, 1999. Monographie nationale sur la diversité biologique au Burkina Faso. Secrétariat permanent du conseil national pour la gestion de l'environnement, Ouagadougou, Burkina Faso, 180 pp.
- Monadjem A., Taylor P.J., Cotterill F.P.D. & Schoeman M.C., 2010. Bats of Southern and Central Africa: a biogeographic and taxonomic synthesis. University of the Witwatersrand, Johannesburg, 596 pp.
- Ossa G. Kramer-Schadt S., Peel A.J., Scharf A.K. & Voigt C.C., 2012. The Movement Ecology of the Straw-Colored Fruit Bat, *Eidolon helvum*, in Sub-Saharan Africa Assessed by Stable Isotope Ratios. PLoS ONE 7(9): e45729. doi:10.1371/journal.pone.0045729
- Owen-Ashley N.T. & Wilson D.E., 1998. *Micropteropus pusillus*. Mammalian Species, 577: 1–5.

- Peterson R.L., 1972. Systematic status of the African molossid bats *Tadarida congica*, *T. niangarae* and *T. trevori*. Contributions, 85: 1–32.
- Poché R.M., 1975. The bats of National Park W, Niger, Africa. Mammalia, 39: 39–50.
- Pye J.D., 1972. Bimodal distribution of constant frequencies in some hipposiderid bats (Mammalia: Hipposideridae). Journal of Zoology, 166: 323–335.
- Qumsiyeh M.B., 1985. The bats of Egypt. Special Publications of the Museum of Texas Tech University, 23: 1–102.
- Racey P.A., 1988. Reproductive assessment in bats. In: Kunz T.H. (Ed.), 1988. Ecological and behavioral methods for the study of bats. Smithsonian Institution Press, Washington, D.C., 31–43.
- Richter H.V. & Cumming G.S., 2008. First application of satellite telemetry to track African straw-coloured fruit bat migration. Journal of Zoology, 275: 172–176.
- Robbins C.B., De Vree F. & Van Cakenberghe V., 1985. A systematic revision of the African bat genus *Scotophilus* (Vespertilionidae). Annales du Musée Royal de l'Afrique centrale (Sciences Zoologiques), 246: 53–84.
- Rosevear D.R., 1965. The Bats of West Africa. Trustees of the British Museum (Natural History), London, 418 pp.
- Sakamoto C.J., Jorgensen C.D. & Herrin C.S., 1979. *Haemolaelaps* (Acarina: Laelaptidae) of the northwest Ethiopian Region. International Journal of Acarology, 5: 39–62.
- Sampaio E.M., Kalko E.K.V., Bernard E., Rodríguez-Herrera B. & Handley Jr. C.O., 2003. A biodiversity assessment of bats (Chiroptera) in a tropical lowland rainforest of Central Amazonia, including methodological and conservation considerations. Studies on Neotropical Fauna and Environment, 38: 17–31.
- Schlitter D.A., Robbins L.W. & Buchanan S.A., 1982. Bats of the Central African Republic (Mammalia: Chiroptera). Annales of the Carnegie Museum, 51: 133–155.
- Schlitter D. A. & Qumsiyeh M. B., 1996. *Rhinopoma microphyllum*. Mammalian Species, 542: 1–5.
- Schmidt D.F., Ludwig C.A. & Carleton M.D., 2008. The Smithsonian Institution African Mammal Project (1961–1972), An annotated gazetteer of collecting localities and summary of its taxonomic and geographic scope. Smithsonian Contributions to Zoology (628), 320 pp.
- Simmons N.B. & Voss R.S., 1998. The mammals of Paracou, French Guiana: A neotropical lowland rainforest fauna. Part 1. Bats. Bulletin American Museum of Natural History. 237: 1–219.
- Tews J., Brose U., Grimm V., Tielbörger K., Wichmann M.C., Schwager M. & Jeltsch F., 2004. Animal species diversity driven by habitat heterogeneity/

diversity: The importance of keystone structures. Journal of Biogeography, 31: 79–92.

- Thomas D.W., 1983. The annual migrations of three species of West African fruit bats (Chiroptera: Pteropodidae). Canadian Journal of Zoology, 61: 2266–2272.
- Vallo P., Guillén-Servent A., Benda P., Pires D.B. & Koubek P., 2009. Variation of mitochondrial DNA in the *Hipposideros caffer* complex (Chiroptera: Hipposideridae) and its taxonomic implications. Acta Chiropterologica, 10: 193–206.
- Van Cakenberghe V. & De Vree F., 1985. Systematics of African Nycteris (Mammalia: Chiroptera). In: Schuchmann K.-L. (Ed.), 1985. Proceedings of an International. Symposium on African Vertebrates. Bonn: Zoologisches Forschungsinstitut und Museum Alexander Koenig, pp. 53–90.
- Van Cakenberghe V. & De Vree F., 1993. Systematics of African Nycteris (Mammalia: Chiroptera). Part II. The Nycteris hispida group. Bonner Zoologische Beiträge, 44: 299–332.
- Van Cakenberghe V. & De Vree F., 1994. A revision of the Rhinopomatidae Dobson, 1872, with the description of a new subspecies (Mammalia: Chiroptera). Senckenbergiana Biologica, 73: 1–24.
- Van Cakenberghe V. & De Vree F., 1998. Systematics of African Nycteris (Mammalia: Chiroptera). Part III. The Nycteris thebaica group. Bonner Zoologische Beiträge, 48: 123–166.
- Vaughan T.A., 1977. Foraging behaviour of the giant leaf-nosed bat (*Hipposideros commersoni*). Ecology African Wildlife Journal, 15: 237–249.
- Vaughan T.A., 1987. Behavioral thermoregulation in the African yellow-winged bat. Journal of Mammalogy, 68: 376–378.
- Vaughan T.A. & Vaughan R.P., 1986. Seasonality and the behavior of the African yellow-winged bat. Journal of Mammalogy, 67: 91–102.
- Volleth M., 1989. Karyotyp evolution und Phylogenie der Vespertilionidae (Mammalia: Chiroptera). Friedrich-Alexander Universität. Ph.D. dissertation Erlangen-Nürnberg, 262 pp.
- Volleth M. & Heller K.-G., 1994. Phylogenetic relationships of Vespertilionid genera (Mammalia: Chiroptera) as revealed by karyological analysis. Zeitschrift fur Zoologische Systematik und Evolutionsforschung, 32: 11–34.
- Weber N. & Fahr J., 2007. A rapid survey of small mammals from Atewa Range Forest Reserve, Eastern Region, Ghana. In: McCullough J., Alonso L.E., Naskrecki P., Wright H.E. & Osei-Owusu Y. (Eds.), 2007. A Rapid Biological Assessment of the Atewa Range Forest Reserve, Eastern Ghana. Arlington, Virginia: Conservation International, 90–98; 178–180 (RAP Bulletin of Biological Assessment, V. 47).